Author: Douglas Geoffrey Northcott
Publisher: CUP Archive
ISBN: 9780521201964
Category : Mathematics
Languages : en
Pages : 224
Book Description
Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.
A Course in Homological Algebra
Author: P.J. Hilton
Publisher: Springer Science & Business Media
ISBN: 146849936X
Category : Mathematics
Languages : en
Pages : 348
Book Description
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.
Publisher: Springer Science & Business Media
ISBN: 146849936X
Category : Mathematics
Languages : en
Pages : 348
Book Description
In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.
An Introduction to Homological Algebra
Author: Charles A. Weibel
Publisher: Cambridge University Press
ISBN: 113964307X
Category : Mathematics
Languages : en
Pages : 470
Book Description
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
Publisher: Cambridge University Press
ISBN: 113964307X
Category : Mathematics
Languages : en
Pages : 470
Book Description
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.
An Introduction to Homological Algebra
Author: Northcott
Publisher: Cambridge University Press
ISBN: 9780521058414
Category : Mathematics
Languages : en
Pages : 294
Book Description
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.
Publisher: Cambridge University Press
ISBN: 9780521058414
Category : Mathematics
Languages : en
Pages : 294
Book Description
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.
Basic Homological Algebra
Author: M. Scott Osborne
Publisher: Springer Science & Business Media
ISBN: 1461212782
Category : Mathematics
Languages : en
Pages : 398
Book Description
From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter
Publisher: Springer Science & Business Media
ISBN: 1461212782
Category : Mathematics
Languages : en
Pages : 398
Book Description
From the reviews: "The book is well written. We find here many examples. Each chapter is followed by exercises, and at the end of the book there are outline solutions to some of them. [...] I especially appreciated the lively style of the book; [...] one is quickly able to find necessary details." EMS Newsletter
An Elementary Approach to Homological Algebra
Author: L.R. Vermani
Publisher: CRC Press
ISBN: 0203484088
Category : Mathematics
Languages : en
Pages : 328
Book Description
Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning
Publisher: CRC Press
ISBN: 0203484088
Category : Mathematics
Languages : en
Pages : 328
Book Description
Homological algebra was developed as an area of study almost 50 years ago, and many books on the subject exist. However, few, if any, of these books are written at a level appropriate for students approaching the subject for the first time. An Elementary Approach to Homological Algebra fills that void. Designed to meet the needs of beginning
A First Course of Homological Algebra
Author: Douglas Geoffrey Northcott
Publisher: CUP Archive
ISBN: 9780521201964
Category : Mathematics
Languages : en
Pages : 224
Book Description
Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.
Publisher: CUP Archive
ISBN: 9780521201964
Category : Mathematics
Languages : en
Pages : 224
Book Description
Designed to introduce the student to homological algebra avoiding the elaborate machinery usually associated with the subject.
Homology Theory
Author: James W. Vick
Publisher: Springer Science & Business Media
ISBN: 1461208815
Category : Mathematics
Languages : en
Pages : 258
Book Description
This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Publisher: Springer Science & Business Media
ISBN: 1461208815
Category : Mathematics
Languages : en
Pages : 258
Book Description
This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.
Cohomology of Groups
Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318
Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318
Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.
Introduction To Commutative Algebra
Author: Michael F. Atiyah
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Publisher: CRC Press
ISBN: 0429973268
Category : Mathematics
Languages : en
Pages : 140
Book Description
First Published in 2018. This book grew out of a course of lectures given to third year undergraduates at Oxford University and it has the modest aim of producing a rapid introduction to the subject. It is designed to be read by students who have had a first elementary course in general algebra. On the other hand, it is not intended as a substitute for the more voluminous tracts such as Zariski-Samuel or Bourbaki. We have concentrated on certain central topics, and large areas, such as field theory, are not touched. In content we cover rather more ground than Northcott and our treatment is substantially different in that, following the modern trend, we put more emphasis on modules and localization.
Relative Homological Algebra
Author: Edgar E. Enochs
Publisher: Walter de Gruyter
ISBN: 3110215217
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.
Publisher: Walter de Gruyter
ISBN: 3110215217
Category : Mathematics
Languages : en
Pages : 377
Book Description
This is the second revised edition of an introduction to contemporary relative homological algebra. It supplies important material essential to understand topics in algebra, algebraic geometry and algebraic topology. Each section comes with exercises providing practice problems for students as well as additional important results for specialists. In this new edition the authors have added well-known additional material in the first three chapters, and added new material that was not available at the time the original edition was published. In particular, the major changes are the following: Chapter 1: Section 1.2 has been rewritten to clarify basic notions for the beginner, and this has necessitated a new Section 1.3. Chapter 3: The classic work of D. G. Northcott on injective envelopes and inverse polynomials is finally included. This provides additional examples for the reader. Chapter 11: Section 11.9 on Kaplansky classes makes volume one more up to date. The material in this section was not available at the time the first edition was published. The authors also have clarified some text throughout the book and updated the bibliography by adding new references. The book is also suitable for an introductory course in commutative and ordinary homological algebra.