Author: David Alexander
Publisher: Rutgers University Press
ISBN: 0813548616
Category : Science
Languages : en
Pages : 297
Book Description
What do a bumble bee and a 747 jet have in common? It’s not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they’re both ideally suited to it. They just do it differently. Why Don’t Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight—in birds, bats, and insects—over millions of years and compares it to the directed efforts of human beings to create the aircraft over the course of a single century. Among the many questions the book answers: Why are wings necessary for flight? How do different wings fly differently? When did flight evolve in animals? What vision, knowledge, and technology was needed before humans could learn to fly? Why are animals and aircrafts perfectly suited to the kind of flying they do? David E. Alexander first describes the basic properties of wings before launching into the diverse challenges of flight and the concepts of flight aerodynamics and control to present an integrated view that shows both why birds have historically had little influence on aeronautical engineering and exciting new areas of technology where engineers are successfully borrowing ideas from animals.
Why Don't Jumbo Jets Flap Their Wings?
Author: David Alexander
Publisher: Rutgers University Press
ISBN: 0813548616
Category : Science
Languages : en
Pages : 297
Book Description
What do a bumble bee and a 747 jet have in common? It’s not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they’re both ideally suited to it. They just do it differently. Why Don’t Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight—in birds, bats, and insects—over millions of years and compares it to the directed efforts of human beings to create the aircraft over the course of a single century. Among the many questions the book answers: Why are wings necessary for flight? How do different wings fly differently? When did flight evolve in animals? What vision, knowledge, and technology was needed before humans could learn to fly? Why are animals and aircrafts perfectly suited to the kind of flying they do? David E. Alexander first describes the basic properties of wings before launching into the diverse challenges of flight and the concepts of flight aerodynamics and control to present an integrated view that shows both why birds have historically had little influence on aeronautical engineering and exciting new areas of technology where engineers are successfully borrowing ideas from animals.
Publisher: Rutgers University Press
ISBN: 0813548616
Category : Science
Languages : en
Pages : 297
Book Description
What do a bumble bee and a 747 jet have in common? It’s not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they’re both ideally suited to it. They just do it differently. Why Don’t Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight—in birds, bats, and insects—over millions of years and compares it to the directed efforts of human beings to create the aircraft over the course of a single century. Among the many questions the book answers: Why are wings necessary for flight? How do different wings fly differently? When did flight evolve in animals? What vision, knowledge, and technology was needed before humans could learn to fly? Why are animals and aircrafts perfectly suited to the kind of flying they do? David E. Alexander first describes the basic properties of wings before launching into the diverse challenges of flight and the concepts of flight aerodynamics and control to present an integrated view that shows both why birds have historically had little influence on aeronautical engineering and exciting new areas of technology where engineers are successfully borrowing ideas from animals.
Why Don't Jumbo Jets Flap Their Wings?
Author: David E. Alexander
Publisher:
ISBN: 9780813544793
Category : Science
Languages : en
Pages : 278
Book Description
What do a bumble bee and a 747 jet have in common? It's not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they're both ideally suited to it. They just do it differently. Why Don't Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight--in birds, bats, and insects--over millions of years and compares it to the directed efforts of human beings to create the aircraft over the course of a single century. Among the many questions the book answers: Why are wings necessary for flight? How do different wings fly differently? When did flight evolve in animals? What vision, knowledge, and technology was needed before humans could learn to fly? Why are animals and aircrafts perfectly suited to the kind of flying they do? David E. Alexander first describes the basic properties of wings before launching into the diverse challenges of flight and the concepts of flight aerodynamics and control to present an integrated view that shows both why birds have historically had little influence on aeronautical engineering and exciting new areas of technology where engineers are successfully borrowing ideas from animals.
Publisher:
ISBN: 9780813544793
Category : Science
Languages : en
Pages : 278
Book Description
What do a bumble bee and a 747 jet have in common? It's not a trick question. The fact is they have quite a lot in common. They both have wings. They both fly. And they're both ideally suited to it. They just do it differently. Why Don't Jumbo Jets Flap Their Wings? offers a fascinating explanation of how nature and human engineers each arrived at powered flight. What emerges is a highly readable account of two very different approaches to solving the same fundamental problems of moving through the air, including lift, thrust, turning, and landing. The book traces the slow and deliberate evolutionary process of animal flight--in birds, bats, and insects--over millions of years and compares it to the directed efforts of human beings to create the aircraft over the course of a single century. Among the many questions the book answers: Why are wings necessary for flight? How do different wings fly differently? When did flight evolve in animals? What vision, knowledge, and technology was needed before humans could learn to fly? Why are animals and aircrafts perfectly suited to the kind of flying they do? David E. Alexander first describes the basic properties of wings before launching into the diverse challenges of flight and the concepts of flight aerodynamics and control to present an integrated view that shows both why birds have historically had little influence on aeronautical engineering and exciting new areas of technology where engineers are successfully borrowing ideas from animals.
On the Wing
Author: David E. Alexander
Publisher: Oxford University Press
ISBN: 0199996792
Category : Science
Languages : en
Pages : 225
Book Description
Ask anybody what superpower they wished to possess and odds are the answer just might be "the ability to fly." What is it about soaring through the air held up by the power of one's own body that has captivated humans for so long? David Alexander examines the evolution of flight in the only four animals to have evolved this ability: insects, pterosaurs, birds, and bats. With an accessible writing style grounded in rigorous research, Alexander breaks new ground in a field that has previously been confined to specialists. While birds have received the majority of attention from flight researchers, Alexander pays equal attention to all four groups of flyers-something that no other book on the subject has done before now. In a streamlined and captivating way, David Alexander demonstrates the links between the tiny 2-mm thrip and the enormous albatross with the 12 feet wingspan used to cross oceans. The book delves into the fossil record of flyers enough to satisfy the budding paleontologist, while also pleasing ornithologists and entomologists alike with its treatment of animal behavior, flapping mechanisms, and wing-origin theory. Alexander uses relatable examples to draw in readers even without a natural interest in birds, bees, and bats. He takes something that is so off-limits and unfamiliar to humans-the act of flying-and puts it in the context of experiences that many readers can relate to. Alexander guides readers through the anomalies of the flying world: hovering hummingbirds, unexpected gliders (squirrels, for instance), and the flyers that went extinct (pterosaurs). Alexander also delves into wing-origin theory and explores whether birds entered the skies from the trees down (as gliders) or from the ground up (as runners) and uses the latest fossil evidence to present readers with an answer.
Publisher: Oxford University Press
ISBN: 0199996792
Category : Science
Languages : en
Pages : 225
Book Description
Ask anybody what superpower they wished to possess and odds are the answer just might be "the ability to fly." What is it about soaring through the air held up by the power of one's own body that has captivated humans for so long? David Alexander examines the evolution of flight in the only four animals to have evolved this ability: insects, pterosaurs, birds, and bats. With an accessible writing style grounded in rigorous research, Alexander breaks new ground in a field that has previously been confined to specialists. While birds have received the majority of attention from flight researchers, Alexander pays equal attention to all four groups of flyers-something that no other book on the subject has done before now. In a streamlined and captivating way, David Alexander demonstrates the links between the tiny 2-mm thrip and the enormous albatross with the 12 feet wingspan used to cross oceans. The book delves into the fossil record of flyers enough to satisfy the budding paleontologist, while also pleasing ornithologists and entomologists alike with its treatment of animal behavior, flapping mechanisms, and wing-origin theory. Alexander uses relatable examples to draw in readers even without a natural interest in birds, bees, and bats. He takes something that is so off-limits and unfamiliar to humans-the act of flying-and puts it in the context of experiences that many readers can relate to. Alexander guides readers through the anomalies of the flying world: hovering hummingbirds, unexpected gliders (squirrels, for instance), and the flyers that went extinct (pterosaurs). Alexander also delves into wing-origin theory and explores whether birds entered the skies from the trees down (as gliders) or from the ground up (as runners) and uses the latest fossil evidence to present readers with an answer.
An Introduction to Flapping Wing Aerodynamics
Author: Wei Shyy
Publisher: Cambridge University Press
ISBN: 1107037263
Category : Science
Languages : en
Pages : 321
Book Description
For anyone interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats, insects and air vehicles (MAVs).
Publisher: Cambridge University Press
ISBN: 1107037263
Category : Science
Languages : en
Pages : 321
Book Description
For anyone interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats, insects and air vehicles (MAVs).
Nature's Machines
Author: David E. Alexander
Publisher: Academic Press
ISBN: 0128498978
Category : Science
Languages : en
Pages : 204
Book Description
Nature's Machines: An Introduction to Organismal Biomechanics presents the fundamental principles of biomechanics in a concise, accessible way while maintaining necessary rigor. It covers the central principles of whole-organism biomechanics as they apply across the animal and plant kingdoms, featuring brief, tightly-focused coverage that does for biologists what H. M. Frost's 1967 Introduction to Biomechanics did for physicians. Frequently encountered, basic concepts such as stress and strain, Young's modulus, force coefficients, viscosity, and Reynolds number are introduced in early chapters in a self-contained format, making them quickly available for learning and as a refresher. More sophisticated, integrative concepts such as viscoelasticity or properties of hydrostats are covered in the later chapters, where they draw on information from multiple earlier sections of the book. Animal and plant biomechanics is now a common research area widely acknowledged by organismal biologists to have broad relevance. Most of the day-to-day activities of an animal involve mechanical processes, and to the extent that organisms are shaped by adaptive evolution, many of those adaptations are constrained and channelized by mechanical properties. The similarity in body shape of a porpoise and a tuna is no coincidence. Many may feel that they have an intuitive understanding of many of the mechanical processes that affect animals and plants, but careful biomechanical analyses often yield counterintuitive results: soft, squishy kelp may be better at withstanding pounding waves during storms than hard-shelled mollusks; really small swimmers might benefit from being spherical rather than streamlined; our bones can operate without breaking for decades, whereas steel surgical implants exhibit fatigue failures in a few months if not fully supported by bone. - Offers organismal biologists and biologists in other areas a background in biomechanics to better understand the research literature and to explore the possibility of using biomechanics approaches in their own work - Provides an introductory presentation of the everyday mechanical challenges faced by animals and plants - Functions as recommended or required reading for advanced undergraduate biology majors taking courses in biomechanics, supplemental reading in a general organismal biology course, or background reading for a biomechanics seminar course
Publisher: Academic Press
ISBN: 0128498978
Category : Science
Languages : en
Pages : 204
Book Description
Nature's Machines: An Introduction to Organismal Biomechanics presents the fundamental principles of biomechanics in a concise, accessible way while maintaining necessary rigor. It covers the central principles of whole-organism biomechanics as they apply across the animal and plant kingdoms, featuring brief, tightly-focused coverage that does for biologists what H. M. Frost's 1967 Introduction to Biomechanics did for physicians. Frequently encountered, basic concepts such as stress and strain, Young's modulus, force coefficients, viscosity, and Reynolds number are introduced in early chapters in a self-contained format, making them quickly available for learning and as a refresher. More sophisticated, integrative concepts such as viscoelasticity or properties of hydrostats are covered in the later chapters, where they draw on information from multiple earlier sections of the book. Animal and plant biomechanics is now a common research area widely acknowledged by organismal biologists to have broad relevance. Most of the day-to-day activities of an animal involve mechanical processes, and to the extent that organisms are shaped by adaptive evolution, many of those adaptations are constrained and channelized by mechanical properties. The similarity in body shape of a porpoise and a tuna is no coincidence. Many may feel that they have an intuitive understanding of many of the mechanical processes that affect animals and plants, but careful biomechanical analyses often yield counterintuitive results: soft, squishy kelp may be better at withstanding pounding waves during storms than hard-shelled mollusks; really small swimmers might benefit from being spherical rather than streamlined; our bones can operate without breaking for decades, whereas steel surgical implants exhibit fatigue failures in a few months if not fully supported by bone. - Offers organismal biologists and biologists in other areas a background in biomechanics to better understand the research literature and to explore the possibility of using biomechanics approaches in their own work - Provides an introductory presentation of the everyday mechanical challenges faced by animals and plants - Functions as recommended or required reading for advanced undergraduate biology majors taking courses in biomechanics, supplemental reading in a general organismal biology course, or background reading for a biomechanics seminar course
QF32
Author: Richard de Crespigny
Publisher: Macmillan Publishers Aus.
ISBN: 1743347898
Category : Biography & Autobiography
Languages : en
Pages : 504
Book Description
QF32 is the award winning bestseller from Richard de Crespigny, author of the forthcoming Fly!: Life Lessons from the Cockpit of QF32 On 4 November 2010, a flight from Singapore to Sydney came within a knife edge of being one of the world's worst air disasters. Shortly after leaving Changi Airport, an explosion shattered Engine 2 of Qantas flight QF32 - an Airbus A380, the largest and most advanced passenger plane ever built. Hundreds of pieces of shrapnel ripped through the wing and fuselage, creating chaos as vital flight systems and back-ups were destroyed or degraded. In other hands, the plane might have been lost with all 469 people on board, but a supremely experienced flight crew, led by Captain Richard de Crespigny, managed to land the crippled aircraft and safely disembark the passengers after hours of nerve-racking effort. Tracing Richard's life and career up until that fateful flight, QF32 shows exactly what goes into the making of a top-level airline pilot, and the extraordinary skills and training needed to keep us safe in the air. Fascinating in its detail and vividly compelling in its narrative, QF32 is the riveting, blow-by-blow story of just what happens when things go badly wrong in the air, told by the captain himself. Winner of ABIA Awards for Best General Non-fiction Book of the Year 2013 and Indie Awards' Best Non-fiction 2012 Shortlisted ABIA Awards' Book of the Year 2013
Publisher: Macmillan Publishers Aus.
ISBN: 1743347898
Category : Biography & Autobiography
Languages : en
Pages : 504
Book Description
QF32 is the award winning bestseller from Richard de Crespigny, author of the forthcoming Fly!: Life Lessons from the Cockpit of QF32 On 4 November 2010, a flight from Singapore to Sydney came within a knife edge of being one of the world's worst air disasters. Shortly after leaving Changi Airport, an explosion shattered Engine 2 of Qantas flight QF32 - an Airbus A380, the largest and most advanced passenger plane ever built. Hundreds of pieces of shrapnel ripped through the wing and fuselage, creating chaos as vital flight systems and back-ups were destroyed or degraded. In other hands, the plane might have been lost with all 469 people on board, but a supremely experienced flight crew, led by Captain Richard de Crespigny, managed to land the crippled aircraft and safely disembark the passengers after hours of nerve-racking effort. Tracing Richard's life and career up until that fateful flight, QF32 shows exactly what goes into the making of a top-level airline pilot, and the extraordinary skills and training needed to keep us safe in the air. Fascinating in its detail and vividly compelling in its narrative, QF32 is the riveting, blow-by-blow story of just what happens when things go badly wrong in the air, told by the captain himself. Winner of ABIA Awards for Best General Non-fiction Book of the Year 2013 and Indie Awards' Best Non-fiction 2012 Shortlisted ABIA Awards' Book of the Year 2013
Comparative Biomechanics
Author: Steven Vogel
Publisher: Princeton University Press
ISBN: 1400847826
Category : Science
Languages : en
Pages : 639
Book Description
The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life—covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials—such as spider silk, jellyfish jelly, and muscle—and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas—including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics—and provides materials for exhibit designers at science museums. Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics
Publisher: Princeton University Press
ISBN: 1400847826
Category : Science
Languages : en
Pages : 639
Book Description
The classic textbook on comparative biomechanics—revised and expanded Why do you switch from walking to running at a specific speed? Why do tall trees rarely blow over in high winds? And why does a spore ejected into air at seventy miles per hour travel only a fraction of an inch? Comparative Biomechanics is the first and only textbook that takes a comprehensive look at the mechanical aspects of life—covering animals and plants, structure and movement, and solids and fluids. An ideal entry point into the ways living creatures interact with their immediate physical world, this revised and updated edition examines how the forms and activities of animals and plants reflect the materials available to nature, considers rules for fluid flow and structural design, and explores how organisms contend with environmental forces. Drawing on physics and mechanical engineering, Steven Vogel looks at how animals swim and fly, modes of terrestrial locomotion, organism responses to winds and water currents, circulatory and suspension-feeding systems, and the relationship between size and mechanical design. He also investigates links between the properties of biological materials—such as spider silk, jellyfish jelly, and muscle—and their structural and functional roles. Early chapters and appendices introduce relevant physical variables for quantification, and problem sets are provided at the end of each chapter. Comparative Biomechanics is useful for physical scientists and engineers seeking a guide to state-of-the-art biomechanics. For a wider audience, the textbook establishes the basic biological context for applied areas—including ergonomics, orthopedics, mechanical prosthetics, kinesiology, sports medicine, and biomimetics—and provides materials for exhibit designers at science museums. Problem sets at the ends of chapters Appendices cover basic background information Updated and expanded documentation and materials Revised figures and text Increased coverage of friction, viscoelastic materials, surface tension, diverse modes of locomotion, and biomimetics
Gravity-Defying Animals
Author: Natalie Lunis
Publisher: Bearport Publishing
ISBN: 1627241337
Category : Juvenile Nonfiction
Languages : en
Pages : 28
Book Description
Gravity is an invisible yet powerful force that pulls people, animals, and objects down to the ground so that they don’t float into the air. As powerful as gravity is, however, there are certain animals that are able to break free of its forceful pull. Some do so by flapping their wings to fly incredibly high. Others shoot out from under the water. Still others stick to ceilings without any glue. In this book, young readers will discover eight of these extraordinary animals—and the secrets behind their gravity-defying powers. Eye-popping photos and clear, simple text bring these one-of-a-kind creatures to vivid life.
Publisher: Bearport Publishing
ISBN: 1627241337
Category : Juvenile Nonfiction
Languages : en
Pages : 28
Book Description
Gravity is an invisible yet powerful force that pulls people, animals, and objects down to the ground so that they don’t float into the air. As powerful as gravity is, however, there are certain animals that are able to break free of its forceful pull. Some do so by flapping their wings to fly incredibly high. Others shoot out from under the water. Still others stick to ceilings without any glue. In this book, young readers will discover eight of these extraordinary animals—and the secrets behind their gravity-defying powers. Eye-popping photos and clear, simple text bring these one-of-a-kind creatures to vivid life.
An Introduction to Flapping Wing Aerodynamics
Author: Wei Shyy
Publisher: Cambridge University Press
ISBN: 1107067987
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This is an ideal book for graduate students and researchers interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats and insects, as well as of micro air vehicles (MAVs), which present some of the richest problems intersecting science and engineering. The agility and spectacular flight performance of natural flyers, thanks to their flexible, deformable wing structures, as well as to outstanding wing, tail and body coordination, is particularly significant. To design and build MAVs with performance comparable to natural flyers, it is essential that natural flyers' combined flexible structural dynamics and aerodynamics are adequately understood. The primary focus of this book is to address the recent developments in flapping wing aerodynamics. This book extends the work presented in Aerodynamics of Low Reynolds Number Flyers (Shyy et al. 2008).
Publisher: Cambridge University Press
ISBN: 1107067987
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
This is an ideal book for graduate students and researchers interested in the aerodynamics, structural dynamics and flight dynamics of small birds, bats and insects, as well as of micro air vehicles (MAVs), which present some of the richest problems intersecting science and engineering. The agility and spectacular flight performance of natural flyers, thanks to their flexible, deformable wing structures, as well as to outstanding wing, tail and body coordination, is particularly significant. To design and build MAVs with performance comparable to natural flyers, it is essential that natural flyers' combined flexible structural dynamics and aerodynamics are adequately understood. The primary focus of this book is to address the recent developments in flapping wing aerodynamics. This book extends the work presented in Aerodynamics of Low Reynolds Number Flyers (Shyy et al. 2008).
Air & Space Smithsonian
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 590
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 590
Book Description