Weak KAM Methods and Ergodic Optimal Problems for Countable Markov Shifts

Weak KAM Methods and Ergodic Optimal Problems for Countable Markov Shifts PDF Author: Rodrigo Bissacot
Publisher:
ISBN:
Category : Ergodic theory
Languages : en
Pages : 22

Get Book Here

Book Description


Ergodic Optimization in the Expanding Case

Ergodic Optimization in the Expanding Case PDF Author: Eduardo Garibaldi
Publisher: Springer
ISBN: 3319666436
Category : Mathematics
Languages : en
Pages : 76

Get Book Here

Book Description
This book focuses on the interpretation of ergodic optimal problems as questions of variational dynamics, employing a comparable approach to that of the Aubry-Mather theory for Lagrangian systems. Ergodic optimization is primarily concerned with the study of optimizing probability measures. This work presents and discusses the fundamental concepts of the theory, including the use and relevance of Sub-actions as analogues to subsolutions of the Hamilton-Jacobi equation. Further, it provides evidence for the impressively broad applicability of the tools inspired by the weak KAM theory.

Issues in General and Specialized Mathematics Research: 2011 Edition

Issues in General and Specialized Mathematics Research: 2011 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 1464964920
Category : Mathematics
Languages : en
Pages : 1326

Get Book Here

Book Description
Issues in General and Specialized Mathematics Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about General and Specialized Mathematics Research. The editors have built Issues in General and Specialized Mathematics Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General and Specialized Mathematics Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Modeling, Dynamics, Optimization and Bioeconomics I

Modeling, Dynamics, Optimization and Bioeconomics I PDF Author: Alberto Adrego Pinto
Publisher: Springer
ISBN: 331904849X
Category : Mathematics
Languages : en
Pages : 749

Get Book Here

Book Description
This volume explores the emerging and current, cutting-edge theories and methods of modeling, optimization, dynamics and bio economy. It provides an overview of the main issues, results and open questions in these fields as well as covers applications to biology, economy, energy, industry, physics, psychology and finance. The majority of the contributed papers for this volume come from the participants of the International Conference on Modeling, Optimization and Dynamics (ICMOD 2010), a satellite conference of EURO XXIV Lisbon 2010, which took place at Faculty of Sciences of University of Porto, Portugal and from the Berkeley Bio economy Conference 2012, at the University of California, Berkeley, USA.

Mathematics of Complexity and Dynamical Systems

Mathematics of Complexity and Dynamical Systems PDF Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885

Get Book Here

Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms PDF Author: Robert Edward Bowen
Publisher: Springer
ISBN: 3540776958
Category : Mathematics
Languages : en
Pages : 85

Get Book Here

Book Description
For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

Introduction to Smooth Ergodic Theory

Introduction to Smooth Ergodic Theory PDF Author: Luís Barreira
Publisher: American Mathematical Society
ISBN: 1470470659
Category : Mathematics
Languages : en
Pages : 355

Get Book Here

Book Description
This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.

Aspects of Ergodic, Qualitative and Statistical Theory of Motion

Aspects of Ergodic, Qualitative and Statistical Theory of Motion PDF Author: Giovanni Gallavotti
Publisher: Springer Science & Business Media
ISBN: 9783540408796
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Intended for beginners in ergodic theory, this introductory textbook addresses students as well as researchers in mathematical physics. The main novelty is the systematic treatment of characteristic problems in ergodic theory by a unified method in terms of convergent power series and renormalization group methods, in particular. Basic concepts of ergodicity, like Gibbs states, are developed and applied to, e.g., Asonov systems or KAM Theroy. Many examples illustrate the ideas and, in addition, a substantial number of interesting topics are treated in the form of guided problems.

One-Dimensional Dynamics

One-Dimensional Dynamics PDF Author: Welington de Melo
Publisher: Springer Science & Business Media
ISBN: 3642780431
Category : Mathematics
Languages : en
Pages : 616

Get Book Here

Book Description
One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).

Positive Transfer Operators and Decay of Correlations

Positive Transfer Operators and Decay of Correlations PDF Author: Viviane Baladi
Publisher: World Scientific
ISBN: 9789810233280
Category : Science
Languages : en
Pages : 332

Get Book Here

Book Description
Although individual orbits of chaotic dynamical systems are by definition unpredictable, the average behavior of typical trajectories can often be given a precise statistical description. Indeed, there often exist ergodic invariant measures with special additional features. For a given invariant measure, and a class of observables, the correlation functions tell whether (and how fast) the system ?mixes?, i.e. ?forgets? its initial conditions.This book, addressed to mathematicians and mathematical (or mathematically inclined) physicists, shows how the powerful technology of transfer operators, imported from statistical physics, has been used recently to construct relevant invariant measures, and to study the speed of decay of their correlation functions, for many chaotic systems. Links with dynamical zeta functions are explained.The book is intended for graduate students or researchers entering the field, and the technical prerequisites have been kept to a minimum.