Ways to improve tumor uptake and penetration of drugs into solid tumors

Ways to improve tumor uptake and penetration of drugs into solid tumors PDF Author: Fabrizio Marcucci
Publisher: Frontiers E-books
ISBN: 2889193500
Category : Cancer
Languages : en
Pages : 130

Get Book

Book Description
The main scope of this topic is to give an update on pharmacologic and non-pharmacologic approaches to enhance uptake and penetration of cancer drugs into tumors. Inadequate accumulation of drugs in tumors has emerged over the last decade as one of the main problems underlying therapeutic failure and drug resistance in the treatment of cancer. Insufficient drug uptake and penetration is causally related to the abnormal tumor architecture. Thus, poor vascularization, increased resistance to blood flow and impaired blood supply represent a first obstacle to the delivery of antitumor drugs to tumor tissue. Decreased or even inverted transvascular pressure gradients compromise convective delivery of drugs. Eventually, an abnormal extracellular matrix offers increased frictional resistance to tumor drug penetration. Abnormal tumor architecture also changes the biology of tumor cells, which contributes to drug resistance through several different mechanisms. The variability in vessel location and structure can make many areas of the tumor hypoxic, which causes the tumor cells to become quiescent and thereby resistant to many antitumor drugs. In addition, the abnormally long distance of part of the tumor cell population from blood vessels provides a challenge to delivering cancer drugs to these cells. We have recently proposed additional mechanisms of tumor drug resistance, which are also related to abnormal tumor architecture. First, increased interstitial fluid pressure can by itself induce drug resistance through the induction of resistance-promoting paracrine factors. Second, the interaction of drug molecules with vessel- proximal tumor cell layers may also induce the release of these factors, which can spread throughout the cancer, and induce drug resistance in tumor cells distant from blood vessels. As can be seen, abnormal tumor architecture, inadequate drug accumulation and tumor drug resistance are tightly linked phenomena, suggesting the need to normalize the tumor architecture, including blood vessels, and/or increase the accumulation of cancer drugs in tumors in order to increase therapeutic effects. Indeed, several classes of drugs (that we refer to as promoter drugs) have been described, that promote tumor uptake and penetration of antitumor drugs, including those that are vasoactive, modify the barrier function of tumor vessels, debulk tumor cells, and overcome intercellular and stromal barriers. In addition, also non-pharmacologic approaches have been described that enhance tumor accumulation of effector drugs (e.g. convection-enhanced delivery, hyperthermia, etc.). Some drugs that have already received regulatory approval (e.g. the anti-VEGF antibody bevacizumab) exert antitumor effects at least in part through normalization of the tumor vasculature and enhancement of the accumulation of effector drugs. Other drugs, acting through different mechanisms of action, are now in clinical development (e.g. NGR-TNF in phase II/III studies) and others are about to enter clinical investigation (e.g. JO-1).

Ways to improve tumor uptake and penetration of drugs into solid tumors

Ways to improve tumor uptake and penetration of drugs into solid tumors PDF Author: Fabrizio Marcucci
Publisher: Frontiers E-books
ISBN: 2889193500
Category : Cancer
Languages : en
Pages : 130

Get Book

Book Description
The main scope of this topic is to give an update on pharmacologic and non-pharmacologic approaches to enhance uptake and penetration of cancer drugs into tumors. Inadequate accumulation of drugs in tumors has emerged over the last decade as one of the main problems underlying therapeutic failure and drug resistance in the treatment of cancer. Insufficient drug uptake and penetration is causally related to the abnormal tumor architecture. Thus, poor vascularization, increased resistance to blood flow and impaired blood supply represent a first obstacle to the delivery of antitumor drugs to tumor tissue. Decreased or even inverted transvascular pressure gradients compromise convective delivery of drugs. Eventually, an abnormal extracellular matrix offers increased frictional resistance to tumor drug penetration. Abnormal tumor architecture also changes the biology of tumor cells, which contributes to drug resistance through several different mechanisms. The variability in vessel location and structure can make many areas of the tumor hypoxic, which causes the tumor cells to become quiescent and thereby resistant to many antitumor drugs. In addition, the abnormally long distance of part of the tumor cell population from blood vessels provides a challenge to delivering cancer drugs to these cells. We have recently proposed additional mechanisms of tumor drug resistance, which are also related to abnormal tumor architecture. First, increased interstitial fluid pressure can by itself induce drug resistance through the induction of resistance-promoting paracrine factors. Second, the interaction of drug molecules with vessel- proximal tumor cell layers may also induce the release of these factors, which can spread throughout the cancer, and induce drug resistance in tumor cells distant from blood vessels. As can be seen, abnormal tumor architecture, inadequate drug accumulation and tumor drug resistance are tightly linked phenomena, suggesting the need to normalize the tumor architecture, including blood vessels, and/or increase the accumulation of cancer drugs in tumors in order to increase therapeutic effects. Indeed, several classes of drugs (that we refer to as promoter drugs) have been described, that promote tumor uptake and penetration of antitumor drugs, including those that are vasoactive, modify the barrier function of tumor vessels, debulk tumor cells, and overcome intercellular and stromal barriers. In addition, also non-pharmacologic approaches have been described that enhance tumor accumulation of effector drugs (e.g. convection-enhanced delivery, hyperthermia, etc.). Some drugs that have already received regulatory approval (e.g. the anti-VEGF antibody bevacizumab) exert antitumor effects at least in part through normalization of the tumor vasculature and enhancement of the accumulation of effector drugs. Other drugs, acting through different mechanisms of action, are now in clinical development (e.g. NGR-TNF in phase II/III studies) and others are about to enter clinical investigation (e.g. JO-1).

Cancer Targeted Drug Delivery

Cancer Targeted Drug Delivery PDF Author: You Han Bae
Publisher: Springer Science & Business Media
ISBN: 1461478766
Category : Medical
Languages : en
Pages : 717

Get Book

Book Description
This book was conceived from a simple question as to why cancer is so difficult to treat. Ultimately we want to find ways to cure cancers, but that may be an elusive dream at least with the technologies we have now and expect to have in the near future. This leads the question of whether it is possible to improve current cancer treatment methods, especially from the perspective of enhancing targeted drug delivery to tumors. This volume is designed to provide information related to the difficulties in treating cancers through targeted drug delivery, our current understanding of cancer biology, and potential technologies that might be used to achieve enhanced drug delivery to tumors. An ideal drug delivery system for treating cancers would maximize the therapeutic efficacy with minimal side effects in clinical applications. The seemingly improved anticancer efficacy of the current nanoparticle-based formulations needs to be viewed from the context of very poor success rates for translation to human applications. The results of in vitro cell culture models and small animal in vivo experiments have not been extrapolated to clinical applications. Finding the reasons for the lack of successful translation is required if we are to discover approaches to substantially extend the survival time of cancer patients, and hopefully identify cures. Cancer Targeted Drug Delivery: Elusive Dream describes some answers of achieving the so far elusive dream of treating cancers like other chronic diseases with therapies that focus using improved drug delivery systems designed to better align with the unique biological and physiological properties of cancer.

Rise and Fall of Epithelial Phenotype

Rise and Fall of Epithelial Phenotype PDF Author: Pierre Savagner
Publisher: Springer Science & Business Media
ISBN: 0387286713
Category : Science
Languages : en
Pages : 341

Get Book

Book Description
Epithelial phenotype is a dynamic stage of differentiation that can be modulated during several physiological or pathological events. The rapid conversion to a mesenchymal-like phenotype is called an epithelial-mesenchymal transition (EMT). The Rise and Fall of Epithelial Phenotype is the first book to comprehensively introduce the concept of EMT. The first part of this volume describes main examples and models and explains their physiological relevance. These examples include hydra morphogenesis, gastrulation in mouse, drosophila and sea urchin, as well as neural crest cell migration and heart morphogenesis in vertebrates. Part two reviews in detail, specific EMT molecular pathways covering extracellular induction, transduction and transcription response and modulation of cell-cell adhesion structures. It emphasizes new specific pathways with potential medical applications. EMTs can also be linked to pathological events such as wound healing and cancer progression, as detailed in this section of the book.

Nanopharmaceuticals: Principles and Applications Vol. 3

Nanopharmaceuticals: Principles and Applications Vol. 3 PDF Author: Vinod Kumar Yata
Publisher: Springer Nature
ISBN: 3030471209
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book

Book Description
This book is the third volume on this subject and focuses on the recent advances of nanopharmaceuticals in cancer, dental, dermal and drug delivery applications and presents their safety, toxicity and therapeutic efficacy. The book also includes the transport phenomenon of nanomaterials and important pathways for drug delivery applications. It goes on to explain the toxicity of nanoparticles to different physiological systems and methods used to assess this for different organ systems using examples of in vivo systems.

Breast Cancer

Breast Cancer PDF Author: Phuc Van Pham
Publisher: BoD – Books on Demand
ISBN: 9535129996
Category : Medical
Languages : en
Pages : 570

Get Book

Book Description
Breast Cancer - From Biology to Medicine thoroughly examines breast cancer from basic definitions, to cellular and molecular biology, to diagnosis and treatment. This book also has some additional focus on preclinical and clinical results in diagnosis and treatment of breast cancer. The book begins with introduction on epidemiology and pathophysiology of breast cancer in Section 1. In Section 2, the subsequent chapters introduce molecular and cellular biology of breast cancer with some particular signaling pathways, the gene expression, as well as the gene methylation and genomic imprinting, especially the existence of breast cancer stem cells. In Section 3, some new diagnostic methods and updated therapies from surgery, chemotherapy, hormone therapy, immunotherapy, radiotherapy, and some complementary therapies are discussed. This book provides a succinct yet comprehensive overview of breast cancer for advanced students, graduate students, and researchers as well as those working with breast cancer in a clinical setting.

Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy

Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy PDF Author: Challa S.S.R. Kumar
Publisher: Springer Nature
ISBN: 3662595966
Category : Technology & Engineering
Languages : en
Pages : 467

Get Book

Book Description
Ninth volume of a 40 volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Modern applications and state-of-the-art techniques are covered and make this volume an essential reading for research scientists in academia and industry.

Brain Targeted Drug Delivery Systems

Brain Targeted Drug Delivery Systems PDF Author: Huile Gao
Publisher: Academic Press
ISBN: 012814002X
Category : Medical
Languages : en
Pages : 499

Get Book

Book Description
Brain Targeted Drug Delivery Systems: A Focus on Nanotechnology and Nanoparticulates provides a guide on nanoparticulates to both academic and industry researchers. The book discusses key points in the development of brain targeted drug delivery, summarizes available strategies, and considers the main problems and pitfalls evidenced in current studies on brain targeted drug delivery systems. As the brain is the most important organ in the human body, and disorders of the central nervous system (CNS) are the most serious threat to human life, this book highlights advances and new research in drug delivery methods to the brain. Provides an overview of brain targeting drug delivery that is useful to both academic and industry-based researchers Discusses key points in developing brain targeting drug delivery systems Summarizes and presents currently available strategies for brain targeting drug delivery Covers not only current studies and their strengths, but also gives insight into the pitfalls of current research

Tumor Vascularization

Tumor Vascularization PDF Author: Domenico Ribatti
Publisher: Academic Press
ISBN: 0128194944
Category : Science
Languages : en
Pages : 198

Get Book

Book Description
Tumor Vascularization discusses the different types of growth of tumor blood vessels and their implications on research and healthcare. The book is divided into three parts: the first one, General Mechanisms, discusses different vessel growth mechanisms, such as sprouting angiogenesis, non-angiogenesis dependent growth, intussusceptive microvascular growth, vascular co-option and vasculogenic mimicry. The second and third parts, entitled Clinical Implications and Therapeutic Implications are dedicated to translating recent findings in this field to patient treatment and healthcare. This book is a valuable source for cancer researchers, oncologists, graduate students and members of the biomedical field who are interested in tumor progression and blood vessels. Explains new, non-orthodox concepts recently developed and related to the modality of growth of tumor blood vessels Provides information on the types of angiogenesis, non-angiogenesis dependent growth and vascular co-option, discussing both their similarities and differences Encompasses a discussion on clinical implications of tumor vascularization to translate research findings into treatment

Inflammation, Aging and Cancer

Inflammation, Aging and Cancer PDF Author: Mahin Khatami
Publisher: Springer
ISBN: 3319664751
Category : Medical
Languages : en
Pages : 389

Get Book

Book Description
This book was prepared as extension of author’s accidental discoveries on experimental models of acute and chronic ocular inflammatory diseases that were established at the University of Pennsylvania in 1980’s. Analyses of original data suggest a series of first evidence for direct link between inflammation and developmental phases of immune dysfunction in multistep tumorigenesis and angiogenesis. The only evidence presented on initial events for interactions and synergies between activated host and recruiting cells toward tumorigenesis. Effective immunity was defined as balance between two highly regulated and biologically opposing arms, Yin and Yang of acute inflammation, an amazingly precise signal communications between immune and non-immune systems requiring differential bioenergetics. Unresolved inflammation is a common denominator mapping aging process and induction of ‘mild’, ‘moderate’ or ‘severe’ immune disorders including cancers. Our knowledge of the fascinating biology of immunity in health or chronic diseases is fragmentary, chaotic and confusing, particularly for cancer science. Lack of progress in curing majority of chronic diseases or cancer is primarily due to the fact that scientists work on isolated molecules/cells or topics that are funded and promoted by decision makers in medical/cancer establishment. Despite existence of over 25 million articles on cancer-related topics, cancer biology and cure remain mysteries to be solved. After a century of cancer research, the failure rates of therapies for solid tumors are 90% (+/-5). Current reductionist views on cancer science are irresponsible, shut-gun approaches and create chaos. Outcomes are loss of millions of precious lives and economic drain to society. Very little is known about initial events that disturb effective immunity whose function is to monitor and arrest growth of cancerous cells or defend against other external or internal hazardous agents that threaten body’s survival. The author demonstrates the serious need for systematic understanding of how immune disruptors and aging process would alter effective immunity. Outcomes of proposed orderly studies are expected to provide logical foundations for cost-effective strategies to promote immunity toward a healthier society. The policy makers and medical/cancer establishment are urged to return to the common sense that our Forefathers used to serve the public.

Cancer Nanotechnology

Cancer Nanotechnology PDF Author:
Publisher: Academic Press
ISBN: 0128141700
Category : Medical
Languages : en
Pages : 222

Get Book

Book Description
Advances in Cancer Research, Volume 139, provides invaluable information on the exciting and fast-moving field of cancer research. Original reviews are presented on a variety of topics relating to the rapidly developing intersection between nanotechnology and cancer research, with unique sections in the new release focusing on Exosomes as a theranostic for lung cancer, Nanotechnology and cancer immunotherapy, Ultrasound imaging agents and delivery systems, Dendronized systems for the delivery of chemotherapeutics, Thermosensitive liposomes for image-guided drug delivery, Supramolecular Chemistry in Tumor Analysis and Drug Delivery, Gold nanoparticles for delivery of cancer therapeutics, and Single cell barcode microchip for cancer research and therapy. Provides the latest information on cancer research Offers outstanding and original reviews on a range of cancer research topics Serves as an indispensable reference for researchers and students alike