Utilization of Geocell-reinforced RAP Material Base Layer in Flexible Pavements

Utilization of Geocell-reinforced RAP Material Base Layer in Flexible Pavements PDF Author: Anu Muthumala George
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 254

Get Book Here

Book Description
Reclaimed asphalt pavement (RAP) materials have been considered as one of the most sustainable and cost-effective options in the pavement industry. The use of RAP materials in pavement construction reduces natural resources depletion and the volume of construction debris discarded into the landfills. However, the low shear strength and high permanent deformation (PD) of RAP materials often limit their application in road bases. Utilization of mechanical stabilizers, such as geocell, for stabilizing RAP bases, have found to be effective in improving the pavement performance. The main objective of this study is to assess the efficacy of high-density polyethylene (HDPE) geocell reinforcements in enhancing the strength and stiffness properties of RAP bases and for mitigating PD behavior. In this dissertation research, several large-scale static and repeated load tests were performed on the unreinforced RAP base (URB) and geocell-reinforced RAP bases (GRRB) over clay subgrade. The performance of the geocell reinforcement was evaluated based on various parameters including bearing capacity (q), elastic deformation (ED), PD, resilient modulus (Mr), traffic benefit ratio (TBR), and rut depth reduction (RDR). Test results showed that the HDPE geocell layer increased the Mr and reduced the PD of the RAP base layer when compared to URB. Numerical models of the GRRB sections were developed to assess the load transfer mechanism of geocell reinforcement under static and dynamic loading. These models were developed in FLAC3D (special character) software by employing finite-difference (FD) approach. The unreinforced and reinforced FD models were validated with experimental results and a good agreement between both was observed. The validated FD model was then used to perform parametric studies to assess the factors affecting the performance of geocell-reinforced bases. Additionally, a life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) were performed to estimate the current and future cost of the pavement section with GRRB. This analysis considered agency, user, environmental, and health impact costs incurred during the service life of the pavement section. Finally, an LCA-LCCA framework was developed to assess the sustainability of the pavement infrastructure using a sustainability index. The results showed that the GRRB can be successfully used as a sustainable and cost-effective replacement for virgin aggregate bases. The findings from this research would aid in the development of design charts for assessing the response of geocell-reinforced pavement bases under static and repeated loading.

Utilization of Geocell-reinforced RAP Material Base Layer in Flexible Pavements

Utilization of Geocell-reinforced RAP Material Base Layer in Flexible Pavements PDF Author: Anu Muthumala George
Publisher:
ISBN:
Category : Asphalt concrete
Languages : en
Pages : 254

Get Book Here

Book Description
Reclaimed asphalt pavement (RAP) materials have been considered as one of the most sustainable and cost-effective options in the pavement industry. The use of RAP materials in pavement construction reduces natural resources depletion and the volume of construction debris discarded into the landfills. However, the low shear strength and high permanent deformation (PD) of RAP materials often limit their application in road bases. Utilization of mechanical stabilizers, such as geocell, for stabilizing RAP bases, have found to be effective in improving the pavement performance. The main objective of this study is to assess the efficacy of high-density polyethylene (HDPE) geocell reinforcements in enhancing the strength and stiffness properties of RAP bases and for mitigating PD behavior. In this dissertation research, several large-scale static and repeated load tests were performed on the unreinforced RAP base (URB) and geocell-reinforced RAP bases (GRRB) over clay subgrade. The performance of the geocell reinforcement was evaluated based on various parameters including bearing capacity (q), elastic deformation (ED), PD, resilient modulus (Mr), traffic benefit ratio (TBR), and rut depth reduction (RDR). Test results showed that the HDPE geocell layer increased the Mr and reduced the PD of the RAP base layer when compared to URB. Numerical models of the GRRB sections were developed to assess the load transfer mechanism of geocell reinforcement under static and dynamic loading. These models were developed in FLAC3D (special character) software by employing finite-difference (FD) approach. The unreinforced and reinforced FD models were validated with experimental results and a good agreement between both was observed. The validated FD model was then used to perform parametric studies to assess the factors affecting the performance of geocell-reinforced bases. Additionally, a life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) were performed to estimate the current and future cost of the pavement section with GRRB. This analysis considered agency, user, environmental, and health impact costs incurred during the service life of the pavement section. Finally, an LCA-LCCA framework was developed to assess the sustainability of the pavement infrastructure using a sustainability index. The results showed that the GRRB can be successfully used as a sustainable and cost-effective replacement for virgin aggregate bases. The findings from this research would aid in the development of design charts for assessing the response of geocell-reinforced pavement bases under static and repeated loading.

Experimental Study on Resilient Behavior of Geocell-reinforced Recycled Asphalt Pavement Base Layer

Experimental Study on Resilient Behavior of Geocell-reinforced Recycled Asphalt Pavement Base Layer PDF Author: Manikanta Saladhi
Publisher:
ISBN:
Category :
Languages : en
Pages : 105

Get Book Here

Book Description
Recycled Asphalt Material (RAP) is defined as removed and reprocessed pavement materials containing asphalt and aggregates. These materials are obtained when asphalt pavements are removed for the rehabilitation and maintenance of distressed pavements. The use of RAP as a base/subbase aggregate in pavement construction is technically and environmentally a sustainable solution, and conserve use of natural resources by requiring less virgin aggregate in pavement construction. Past studies showed that the use of 100% RAP as base course lacks shear strength and can undergo large deformations. Geocells are a system of threedimensional, interconnected, honeycombed cellular structures that resist the lateral expansion of soil particles and act like a slab to distribute surface loads over a larger area of the foundation soil. Most of the recent studies on geocell-reinforced RAP bases show that they improve the pavement service life, strength and stiffness of base layer. The main objective of this research was to develop and construct a large-scale laboratory test setup, which was used to perform a series of cyclic plate load tests to examine resilient behavior of geocell-reinforced RAP bases. Six large-scale laboratory cyclic plate load tests and two static plate load tests were conducted on unreinforced and geocell-reinforced RAP base road sections. The unpaved road sections consisted of moderate subgrade, unreinforced/geocell-reinforced RAP base, and a RAP cover. The test results showed that the geocell-reinforcement improved the performance of RAP bases. The high hoop strength of the geocell reinforcement provided more confinement and offered additional resistance against lateral movement of RAP base. The geocell reinforcement significantly reduced the permanent and resilient deformations of RAP base when compared to that of unreinforced RAP bases, thereby increasing resilient modulus of the reinforced base layer. The geocellreinforced RAP base layer acted as a stiff mattress foundation and resulted in lower compression of RAP base and subgrade. The geocell reinforcement significantly reduced the permanent deformations of RAP base approximately by 50% when compared to that of unreinforced RAP base. Additionally, the geocell reinforcement had increased resilient modulus of RAP base by a factor of 3.0, compared to that of unreinforced RAP base.

Feasibility of the Use of Existing Analytical Models and Experimental Data to Assess Current Design Methods for Pavement Geogrid-reinforced Base Layers

Feasibility of the Use of Existing Analytical Models and Experimental Data to Assess Current Design Methods for Pavement Geogrid-reinforced Base Layers PDF Author: Steven W. Perkins
Publisher:
ISBN:
Category : Geotextiles
Languages : en
Pages : 88

Get Book Here

Book Description
In recent years polymer geogrids have been proposed and used to improve the performance of paved roadways and/or to reduce base course thickness. Performance improvements have been demonstrated for design conditions where relatively large rut depths are acceptable and where relatively weak pavement sections have been used. This work was undertaken to examine existing literature concerning laboratory and field experimental studies, and analytical studies pertaining to the inclusion of geogrid polymer materials in roadway pavement sections for the purpose of improving performance or to allow for a reduction in the constructed section thicknesses. The original goal of this study was to examine the feasibility of using existing data from laboratory or field studies and existing finite element models to validate and calibrate the model and then use the model to predict the response of pavement sections not included in the experimental studies. This study has indicated that this approach is feasible and has been accomplished by a previous project. Furthermore, the literature reviewed in this study has shown conflicting results pertaining to the level of improvement that is realized by inclusion of a geogrid in the base course layer of a pavement section. While additional laboratory and analytical studies may aid in resolving these conflicts it is concluded that the most productive approach at this point is to construct well instrumented, full scale field sections to assess improvement levels. These sections should be designed and constructed to include variables identified in previous studies as having the greatest impact on pavement performance.

Advances in Transportation Geotechnics IV

Advances in Transportation Geotechnics IV PDF Author: Erol Tutumluer
Publisher: Springer Nature
ISBN: 3030772306
Category : Science
Languages : en
Pages : 971

Get Book Here

Book Description
This volume presents selected papers presented during the 4th International Conference on Transportation Geotechnics (ICTG). The papers address the geotechnical challenges in design, construction, maintenance, monitoring, and upgrading of roads, railways, airfields, and harbor facilities and other ground transportation infrastructure with the goal of providing safe, economic, environmental, reliable and sustainable infrastructures. This volume will be of interest to postgraduate students, academics, researchers, and consultants working in the field of civil and transport infrastructure.

Applications of Geogrids

Applications of Geogrids PDF Author: Robert M. Koerner
Publisher:
ISBN:
Category : Geogrids
Languages : en
Pages : 68

Get Book Here

Book Description


Reinforcement of Flexible Pavement Structures Using Geocells

Reinforcement of Flexible Pavement Structures Using Geocells PDF Author: Michael J. Mengelt
Publisher:
ISBN:
Category :
Languages : en
Pages : 394

Get Book Here

Book Description


A Study of Geosynthetic Reinforced Flexible Pavement System

A Study of Geosynthetic Reinforced Flexible Pavement System PDF Author: Ranjiv Gupta
Publisher:
ISBN:
Category :
Languages : en
Pages : 562

Get Book Here

Book Description
The use of geosynthetics as reinforcement for the base layer of flexible pavement systems has grown steadily over the past thirty years. In spite of the evidence that geosynthetic reinforcements can lead to improved pavement performance, the specific conditions or mechanisms that enable and govern the reinforcement are unclear, largely remaining unidentified and unmeasured. The appropriate selection of design parameters for geosynthetics is complicated by the difficulty in associating their relevant properties to the improved pavement performance. In addition, pavement structures deteriorate under the combined effects of traffic loading and environmental conditions, such as moisture changes. However, these factors have not been studied together in the evaluation of the overall performance of pavement systems. Consequently, this research focused on the assessment of the effect of geosynthetics on the pavement structural section's ability to support traffic loads and to resist environmental changes. Accordingly, the primary objectives of this research were: (i) to determine the governing mechanisms and relevant properties of geosynthetics that contribute to the enhanced performance of pavement systems; (ii) to develop appropriate analytical, laboratory and field methods that are capable of quantifying the above properties for geosynthetics; and (iii) to enable the prediction of pavement performance depending on the various types of geosynthetics used. To fulfill these three objectives, an evaluative, laboratory and field study was performed. The improved performance of pavements due to addition of geosynthetics was attributed to the ability of geosynthetics to laterally restrain the base course material, thereby providing a confinement effect to the pavement. A parameter to quantify the soil-geosynthetic interaction at low displacement magnitudes based on the solution of an analytical model for geosynthetics confined in pullout box was proposed. The pullout tests were then conducted on various geosynthetics to obtain the proposed parameter for various geosynthetics. The quantitative magnitude of the parameter value from the laboratory tests was compared with the qualitative performance observed in the field test sections. Overall, a good agreement was obtained between the laboratory and field results, thereby providing confidence in the ability of the proposed analytical model to predict the governing mechanism for geosynthetic reinforced pavements.

Mechanistic-empirical Modeling and Design Model Development of Geosynthetic Reinforced Flexible Pavements

Mechanistic-empirical Modeling and Design Model Development of Geosynthetic Reinforced Flexible Pavements PDF Author: Steven W. Perkins
Publisher:
ISBN:
Category : Geogrids
Languages : en
Pages : 156

Get Book Here

Book Description
This report provides an appendix for the report with the reference: Perkins, S.W. (2001) Mechanistic Empirical Modeling and Design Model Development of Geosynthetic Reinforced Flexible Pavements: Final Report, Montana Department of Transportation, Helena, Montana, FHWA/MT 01 002/99160 1A, 156p. This report contains output from the software program DARWin for each design example provided in Appendix B of the above referenced report.

Recent Advances in Civil Engineering

Recent Advances in Civil Engineering PDF Author: Lakshman Nandagiri
Publisher: Springer Nature
ISBN: 9811918627
Category : Technology & Engineering
Languages : en
Pages : 1088

Get Book Here

Book Description
This book presents the select proceedings of the International Conference on Civil Engineering Trends and Challenges for Sustainability (CTCS 2021). It discusses emerging and latest research and advances in sustainability in different areas of civil engineering, providing solutions to sustainable development. Various topics covered include sustainable construction technology & building materials; structural engineering, transportation and traffic engineering, geotechnical engineering, environmental engineering, water resources engineering, remote sensing and GIS applications. This book will be of potential interest to researchers and professionals working in sustainable civil engineering and related fields.

Engineering Challenges for Sustainable Future

Engineering Challenges for Sustainable Future PDF Author: Noor Amila Wan Abdullah Zawawi
Publisher: CRC Press
ISBN: 1315349477
Category : Science
Languages : en
Pages : 787

Get Book Here

Book Description
Engineering Challenges for Sustainable Future contains the papers presented at the 3rd International Conference on Civil, Offshore & Environmental Engineering (ICCOEE2016, Kuala Lumpur, Malaysia, 15-17 August 2016), under the banner of World Engineering, Science & Technology Congress (ESTCON2016). The ICCOEE series of conferences started in Kuala Lumpur, Malaysia 2012, and the second event of the series took place in Kuala Lumpur, Malaysia 2014. This conference series deals with the civil, offshore & environmental engineering field, addressing the following topics: • Environmental and Water Resources Engineering • Coastal and Offshore Engineering • Structures and Materials • Construction and Project Management • Highway, Geotechnical and Transportation Engineering and Geo-informatics This book is an essential reading for academic, engineers and all professionals involved in the area of civil, offshore and environmental engineering.