Author: Kareem Khalifa
Publisher: Cambridge University Press
ISBN: 1107195632
Category : Philosophy
Languages : en
Pages : 265
Book Description
The first comprehensive exploration of the nature and value of understanding, addressing burgeoning debates in epistemology and philosophy of science.
Understanding, Explanation, and Scientific Knowledge
Author: Kareem Khalifa
Publisher: Cambridge University Press
ISBN: 1107195632
Category : Philosophy
Languages : en
Pages : 265
Book Description
The first comprehensive exploration of the nature and value of understanding, addressing burgeoning debates in epistemology and philosophy of science.
Publisher: Cambridge University Press
ISBN: 1107195632
Category : Philosophy
Languages : en
Pages : 265
Book Description
The first comprehensive exploration of the nature and value of understanding, addressing burgeoning debates in epistemology and philosophy of science.
Scientific Understanding
Author: Henk W. de Regt
Publisher: University of Pittsburgh Pre
ISBN: 0822971240
Category : Science
Languages : en
Pages : 365
Book Description
To most scientists, and to those interested in the sciences, understanding is the ultimate aim of scientific endeavor. In spite of this, understanding, and how it is achieved, has received little attention in recent philosophy of science. Scientific Understanding seeks to reverse this trend by providing original and in-depth accounts of the concept of understanding and its essential role in the scientific process. To this end, the chapters in this volume explore and develop three key topics: understanding and explanation, understanding and models, and understanding in scientific practice. Earlier philosophers, such as Carl Hempel, dismissed understanding as subjective and pragmatic. They believed that the essence of science was to be found in scientific theories and explanations. In Scientific Understanding, the contributors maintain that we must also consider the relation between explanations and the scientists who construct and use them. They focus on understanding as the cognitive state that is a goal of explanation and on the understanding of theories and models as a means to this end. The chapters in this book highlight the multifaceted nature of the process of scientific research. The contributors examine current uses of theory, models, simulations, and experiments to evaluate the degree to which these elements contribute to understanding. Their analyses pay due attention to the roles of intelligibility, tacit knowledge, and feelings of understanding. Furthermore, they investigate how understanding is obtained within diverse scientific disciplines and examine how the acquisition of understanding depends on specific contexts, the objects of study, and the stated aims of research.
Publisher: University of Pittsburgh Pre
ISBN: 0822971240
Category : Science
Languages : en
Pages : 365
Book Description
To most scientists, and to those interested in the sciences, understanding is the ultimate aim of scientific endeavor. In spite of this, understanding, and how it is achieved, has received little attention in recent philosophy of science. Scientific Understanding seeks to reverse this trend by providing original and in-depth accounts of the concept of understanding and its essential role in the scientific process. To this end, the chapters in this volume explore and develop three key topics: understanding and explanation, understanding and models, and understanding in scientific practice. Earlier philosophers, such as Carl Hempel, dismissed understanding as subjective and pragmatic. They believed that the essence of science was to be found in scientific theories and explanations. In Scientific Understanding, the contributors maintain that we must also consider the relation between explanations and the scientists who construct and use them. They focus on understanding as the cognitive state that is a goal of explanation and on the understanding of theories and models as a means to this end. The chapters in this book highlight the multifaceted nature of the process of scientific research. The contributors examine current uses of theory, models, simulations, and experiments to evaluate the degree to which these elements contribute to understanding. Their analyses pay due attention to the roles of intelligibility, tacit knowledge, and feelings of understanding. Furthermore, they investigate how understanding is obtained within diverse scientific disciplines and examine how the acquisition of understanding depends on specific contexts, the objects of study, and the stated aims of research.
The Nature of Scientific Knowledge
Author: Kevin McCain
Publisher: Springer
ISBN: 3319334050
Category : Science
Languages : en
Pages : 281
Book Description
This book offers a comprehensive and accessible introduction to the epistemology of science. It not only introduces readers to the general epistemological discussion of the nature of knowledge, but also provides key insights into the particular nuances of scientific knowledge. No prior knowledge of philosophy or science is assumed by The Nature of Scientific Knowledge. Nevertheless, the reader is taken on a journey through several core concepts of epistemology and philosophy of science that not only explores the characteristics of the scientific knowledge of individuals but also the way that the development of scientific knowledge is a particularly social endeavor. The topics covered in this book are of keen interest to students of epistemology and philosophy of science as well as science educators interested in the nature of scientific knowledge. In fact, as a result of its clear and engaging approach to understanding scientific knowledge The Nature of Scientific Knowledge is a book that anyone interested in scientific knowledge, knowledge in general, and any of a myriad of related concepts would be well advised to study closely.
Publisher: Springer
ISBN: 3319334050
Category : Science
Languages : en
Pages : 281
Book Description
This book offers a comprehensive and accessible introduction to the epistemology of science. It not only introduces readers to the general epistemological discussion of the nature of knowledge, but also provides key insights into the particular nuances of scientific knowledge. No prior knowledge of philosophy or science is assumed by The Nature of Scientific Knowledge. Nevertheless, the reader is taken on a journey through several core concepts of epistemology and philosophy of science that not only explores the characteristics of the scientific knowledge of individuals but also the way that the development of scientific knowledge is a particularly social endeavor. The topics covered in this book are of keen interest to students of epistemology and philosophy of science as well as science educators interested in the nature of scientific knowledge. In fact, as a result of its clear and engaging approach to understanding scientific knowledge The Nature of Scientific Knowledge is a book that anyone interested in scientific knowledge, knowledge in general, and any of a myriad of related concepts would be well advised to study closely.
Reproducibility and Replicability in Science
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257
Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Publisher: National Academies Press
ISBN: 0309486165
Category : Science
Languages : en
Pages : 257
Book Description
One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.
Scientific Knowledge
Author: J.H. Fetzer
Publisher: Springer Science & Business Media
ISBN: 9400985584
Category : Science
Languages : en
Pages : 336
Book Description
With this defense of intensional realism as a philosophical foundation for understanding scientific procedures and grounding scientific knowledge, James Fetzer provides a systematic alternative to much of recent work on scientific theory. To Fetzer, the current state of understanding the 'laws' of nature, or the 'law-like' statements of scientific theories, appears to be one of philosophical defeat; and he is determined to overcome that defeat. Based upon his incisive advocacy of the single-case propensity interpretation of probability, Fetzer develops a coherent structure within which the central problems of the philosophy of science find their solutions. Whether the reader accepts the author's contentions may, in the end, depend upon ancient choices in the interpretation of experience and explanation, but there can be little doubt of Fetzer's spirited competence in arguing for setting ontology before epistemology, and within the analysis of language. To us, Fetzer's ambition is appealing, fusing, as he says, the substantive commitment of the Popperian with the conscientious sensitivity of the Hempelian to the technical precision required for justified explication. To Fetzer, science is the objective pursuit of fallible general knowledge. This innocent character ization, which we suppose most scientists would welcome, receives a most careful elaboration in this book; it will demand equally careful critical con sideration. Center for the Philosophy and ROBERT S. COHEN History of Science, MARX W. WARTOFSKY Boston University October 1981 v TABLE OF CONTENTS EDITORIAL PREFACE v FOREWORD xi ACKNOWLEDGEMENTS xv PART I: CAUSATION 1.
Publisher: Springer Science & Business Media
ISBN: 9400985584
Category : Science
Languages : en
Pages : 336
Book Description
With this defense of intensional realism as a philosophical foundation for understanding scientific procedures and grounding scientific knowledge, James Fetzer provides a systematic alternative to much of recent work on scientific theory. To Fetzer, the current state of understanding the 'laws' of nature, or the 'law-like' statements of scientific theories, appears to be one of philosophical defeat; and he is determined to overcome that defeat. Based upon his incisive advocacy of the single-case propensity interpretation of probability, Fetzer develops a coherent structure within which the central problems of the philosophy of science find their solutions. Whether the reader accepts the author's contentions may, in the end, depend upon ancient choices in the interpretation of experience and explanation, but there can be little doubt of Fetzer's spirited competence in arguing for setting ontology before epistemology, and within the analysis of language. To us, Fetzer's ambition is appealing, fusing, as he says, the substantive commitment of the Popperian with the conscientious sensitivity of the Hempelian to the technical precision required for justified explication. To Fetzer, science is the objective pursuit of fallible general knowledge. This innocent character ization, which we suppose most scientists would welcome, receives a most careful elaboration in this book; it will demand equally careful critical con sideration. Center for the Philosophy and ROBERT S. COHEN History of Science, MARX W. WARTOFSKY Boston University October 1981 v TABLE OF CONTENTS EDITORIAL PREFACE v FOREWORD xi ACKNOWLEDGEMENTS xv PART I: CAUSATION 1.
Understanding Philosophy of Science
Author: James Ladyman
Publisher: Routledge
ISBN: 1134597908
Category : Philosophy
Languages : en
Pages : 312
Book Description
Few can imagine a world without telephones or televisions; many depend on computers and the Internet as part of daily life. Without scientific theory, these developments would not have been possible. In this exceptionally clear and engaging introduction to philosophy of science, James Ladyman explores the philosophical questions that arise when we reflect on the nature of the scientific method and the knowledge it produces. He discusses whether fundamental philosophical questions about knowledge and reality might be answered by science, and considers in detail the debate between realists and antirealists about the extent of scientific knowledge. Along the way, central topics in philosophy of science, such as the demarcation of science from non-science, induction, confirmation and falsification, the relationship between theory and observation and relativism are all addressed. Important and complex current debates over underdetermination, inference to the best explaination and the implications of radical theory change are clarified and clearly explained for those new to the subject.
Publisher: Routledge
ISBN: 1134597908
Category : Philosophy
Languages : en
Pages : 312
Book Description
Few can imagine a world without telephones or televisions; many depend on computers and the Internet as part of daily life. Without scientific theory, these developments would not have been possible. In this exceptionally clear and engaging introduction to philosophy of science, James Ladyman explores the philosophical questions that arise when we reflect on the nature of the scientific method and the knowledge it produces. He discusses whether fundamental philosophical questions about knowledge and reality might be answered by science, and considers in detail the debate between realists and antirealists about the extent of scientific knowledge. Along the way, central topics in philosophy of science, such as the demarcation of science from non-science, induction, confirmation and falsification, the relationship between theory and observation and relativism are all addressed. Important and complex current debates over underdetermination, inference to the best explaination and the implications of radical theory change are clarified and clearly explained for those new to the subject.
The Nature of Scientific Thinking
Author: J. Faye
Publisher: Springer
ISBN: 1137389834
Category : Science
Languages : en
Pages : 347
Book Description
Scientific thinking must be understood as an activity. The acts of interpretation, representation, and explanation are the cognitive processes by which scientific thinking leads to understanding. The book explores the nature of these processes and describes how scientific thinking can only be grasped from a pragmatic perspective.
Publisher: Springer
ISBN: 1137389834
Category : Science
Languages : en
Pages : 347
Book Description
Scientific thinking must be understood as an activity. The acts of interpretation, representation, and explanation are the cognitive processes by which scientific thinking leads to understanding. The book explores the nature of these processes and describes how scientific thinking can only be grasped from a pragmatic perspective.
Science Literacy
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309447569
Category : Education
Languages : en
Pages : 167
Book Description
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
Publisher: National Academies Press
ISBN: 0309447569
Category : Education
Languages : en
Pages : 167
Book Description
Science is a way of knowing about the world. At once a process, a product, and an institution, science enables people to both engage in the construction of new knowledge as well as use information to achieve desired ends. Access to scienceâ€"whether using knowledge or creating itâ€"necessitates some level of familiarity with the enterprise and practice of science: we refer to this as science literacy. Science literacy is desirable not only for individuals, but also for the health and well- being of communities and society. More than just basic knowledge of science facts, contemporary definitions of science literacy have expanded to include understandings of scientific processes and practices, familiarity with how science and scientists work, a capacity to weigh and evaluate the products of science, and an ability to engage in civic decisions about the value of science. Although science literacy has traditionally been seen as the responsibility of individuals, individuals are nested within communities that are nested within societiesâ€"and, as a result, individual science literacy is limited or enhanced by the circumstances of that nesting. Science Literacy studies the role of science literacy in public support of science. This report synthesizes the available research literature on science literacy, makes recommendations on the need to improve the understanding of science and scientific research in the United States, and considers the relationship between scientific literacy and support for and use of science and research.
Taking Science to School
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
Publisher: National Academies Press
ISBN: 0309133831
Category : Education
Languages : en
Pages : 404
Book Description
What is science for a child? How do children learn about science and how to do science? Drawing on a vast array of work from neuroscience to classroom observation, Taking Science to School provides a comprehensive picture of what we know about teaching and learning science from kindergarten through eighth grade. By looking at a broad range of questions, this book provides a basic foundation for guiding science teaching and supporting students in their learning. Taking Science to School answers such questions as: When do children begin to learn about science? Are there critical stages in a child's development of such scientific concepts as mass or animate objects? What role does nonschool learning play in children's knowledge of science? How can science education capitalize on children's natural curiosity? What are the best tasks for books, lectures, and hands-on learning? How can teachers be taught to teach science? The book also provides a detailed examination of how we know what we know about children's learning of scienceâ€"about the role of research and evidence. This book will be an essential resource for everyone involved in K-8 science educationâ€"teachers, principals, boards of education, teacher education providers and accreditors, education researchers, federal education agencies, and state and federal policy makers. It will also be a useful guide for parents and others interested in how children learn.
What is Scientific Knowledge?
Author: Kevin McCain
Publisher: Routledge
ISBN: 1351336606
Category : Philosophy
Languages : en
Pages : 472
Book Description
What Is Scientific Knowledge? is a much-needed collection of introductory-level chapters on the epistemology of science. Renowned historians, philosophers, science educators, and cognitive scientists have authored 19 original contributions specifically for this volume. The chapters, accessible for students in both philosophy and the sciences, serve as helpful introductions to the primary debates surrounding scientific knowledge. First-year undergraduates can readily understand the variety of discussions in the volume, and yet advanced students and scholars will encounter chapters rich enough to engage their many interests. The variety and coverage in this volume make it the perfect choice for the primary text in courses on scientific knowledge. It can also be used as a supplemental book in classes in epistemology, philosophy of science, and other related areas. Key features: * an accessible and comprehensive introduction to the epistemology of science for a wide variety of students (both undergraduate- and graduate-level) and researchers * written by an international team of senior researchers and the most promising junior scholars * addresses several questions that students and lay people interested in science may already have, including questions about how scientific knowledge is gained, its nature, and the challenges it faces.
Publisher: Routledge
ISBN: 1351336606
Category : Philosophy
Languages : en
Pages : 472
Book Description
What Is Scientific Knowledge? is a much-needed collection of introductory-level chapters on the epistemology of science. Renowned historians, philosophers, science educators, and cognitive scientists have authored 19 original contributions specifically for this volume. The chapters, accessible for students in both philosophy and the sciences, serve as helpful introductions to the primary debates surrounding scientific knowledge. First-year undergraduates can readily understand the variety of discussions in the volume, and yet advanced students and scholars will encounter chapters rich enough to engage their many interests. The variety and coverage in this volume make it the perfect choice for the primary text in courses on scientific knowledge. It can also be used as a supplemental book in classes in epistemology, philosophy of science, and other related areas. Key features: * an accessible and comprehensive introduction to the epistemology of science for a wide variety of students (both undergraduate- and graduate-level) and researchers * written by an international team of senior researchers and the most promising junior scholars * addresses several questions that students and lay people interested in science may already have, including questions about how scientific knowledge is gained, its nature, and the challenges it faces.