Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses

Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses PDF Author: Travis William Wright
Publisher:
ISBN: 9781339544151
Category :
Languages : en
Pages :

Get Book Here

Book Description
Studying the ultrafast dynamics of small molecules can serve as the first step in understanding the dynamics in larger chemically and biologically relevant molecules. To make direct comparisons with existing computational techniques, the photons used in pump-probe spectroscopy must make perturbative transitions between the electronic states of isolated small molecules. In this dissertation experimental investigations of ultrafast dynamics in electronic excitations of neutral ethylene and carbon dioxide are discussed. These experiments are performed using VUV/XUV femtosecond pulses as pump and probe. To make photons with sufficient energy for single photon transitions, VUV and XUV light is generated by high harmonic generation (HHG) using a high pulse energy ([approximately] 30 - 40 mJ) Ti:sapphire femtosecond laser. Sufficient flux must be generated to enable splitting of the HHG light into pump and probe arms. The system produces > 1010 photons per shot, corresponding to nearly 10 MW of peak power in the XUV. Using a high flux of high energy photons creates a unique set of challenges when designing a detector capable of performing pump-probe experiments. A velocity map imaging (VMI) detector has been designed to address these challenges, and has become a successful tool facilitating studies into molecular dynamics that were not possible before its implementation. The emphasis on using high energy, single photon transitions allowed theoretical calculations to be directly compared to experimental yields for the first time. This comparison resolved a long standing issue in the excited state lifetime of ethylene, and provided a confirmation of the branching ratio between the two nonadiabatic relaxation pathways that return ethylene back to its ground state from the [pi]*. The participation of the 3s Rydberg state has also been measured by collecting the time resolved photoelectron spectrum during the dynamics on ethylene [pi]* excited state, confirming calculations predicting the effect of the 3s. In carbon dioxide the first time resolved measurement in the lowest electronic excitation of carbon dioxide has been performed. A high kinetic energy release channel shows the signature of wavepacket dynamics within the excited state manifold. Deviation from the direct dissociation predicted for the pumped state provides experimental evidence confirming theoretical predictions of nonadiabatic transitions within the lowest lying electronically excited states.

Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses

Ultrafast Molecular Dynamics Studied with Vacuum Ultraviolet Pulses PDF Author: Travis William Wright
Publisher:
ISBN: 9781339544151
Category :
Languages : en
Pages :

Get Book Here

Book Description
Studying the ultrafast dynamics of small molecules can serve as the first step in understanding the dynamics in larger chemically and biologically relevant molecules. To make direct comparisons with existing computational techniques, the photons used in pump-probe spectroscopy must make perturbative transitions between the electronic states of isolated small molecules. In this dissertation experimental investigations of ultrafast dynamics in electronic excitations of neutral ethylene and carbon dioxide are discussed. These experiments are performed using VUV/XUV femtosecond pulses as pump and probe. To make photons with sufficient energy for single photon transitions, VUV and XUV light is generated by high harmonic generation (HHG) using a high pulse energy ([approximately] 30 - 40 mJ) Ti:sapphire femtosecond laser. Sufficient flux must be generated to enable splitting of the HHG light into pump and probe arms. The system produces > 1010 photons per shot, corresponding to nearly 10 MW of peak power in the XUV. Using a high flux of high energy photons creates a unique set of challenges when designing a detector capable of performing pump-probe experiments. A velocity map imaging (VMI) detector has been designed to address these challenges, and has become a successful tool facilitating studies into molecular dynamics that were not possible before its implementation. The emphasis on using high energy, single photon transitions allowed theoretical calculations to be directly compared to experimental yields for the first time. This comparison resolved a long standing issue in the excited state lifetime of ethylene, and provided a confirmation of the branching ratio between the two nonadiabatic relaxation pathways that return ethylene back to its ground state from the [pi]*. The participation of the 3s Rydberg state has also been measured by collecting the time resolved photoelectron spectrum during the dynamics on ethylene [pi]* excited state, confirming calculations predicting the effect of the 3s. In carbon dioxide the first time resolved measurement in the lowest electronic excitation of carbon dioxide has been performed. A high kinetic energy release channel shows the signature of wavepacket dynamics within the excited state manifold. Deviation from the direct dissociation predicted for the pumped state provides experimental evidence confirming theoretical predictions of nonadiabatic transitions within the lowest lying electronically excited states.

Femtosecond Molecular Dynamics Studied with Vacuum Ultraviolet Pulse Pairs

Femtosecond Molecular Dynamics Studied with Vacuum Ultraviolet Pulse Pairs PDF Author: Thomas K. Allison
Publisher:
ISBN: 9781124139937
Category :
Languages : en
Pages : 105

Get Book Here

Book Description


Femtosecond Molecular Dynamics Studied with Vacuum Ultraviolet Pulse Pairs

Femtosecond Molecular Dynamics Studied with Vacuum Ultraviolet Pulse Pairs PDF Author: Thomas K. Allison III
Publisher:
ISBN:
Category :
Languages : en
Pages : 238

Get Book Here

Book Description
Atoms and molecules have most of their oscillator strength in the vacuum ultraviolet (VUV) and extreme ultraviolet (XUV), between the wavelengths of 200 nm and 30 nm. However, most femtosecond spectroscopy has been restricted to the visible and infrared due to a lack of sufficiently intense VUV and XUV femtosecond light sources. This thesis discusses extensions of pump/probe spectroscopy to the VUV and XUV, and its application to the dynamics of ethylene and oxygen molecules excited at 161 nm. I begin with a detailed discussion of the short wavelength light source used in this work. The source is based on the high order harmonics of a near infrared laser and can deliver> 1010 photons per shot in femtosecond pulses, corresponding to nearly 10 MW peak power in the XUV. Measurements of the harmonic yields as a function of the generation conditions reveal the roles of phase matching and ionization gating in the high order harmonic generation process. Pump/probe measurements are conducted using a unique VUV interferometer, capable of combining two different harmonics at a focus with variable delay. Measurements of VUV multiphoton ionization allows for characterization of the source and the interferometer. In molecules, time resolved measurements of fragment ion yields reveal the femtosecond dynamics of the system. The range of wavelengths available for pump and probe allows the dynamics to be followed from photo-excitation all the way to dissociation without detection window effects. The dynamics in ethylene upon [pi] 2![pi]* excitation are protypical of larger molecules and have thus served as an important test case for advanced ab initio molecular dynamics theories. Femtosecond measurements to date, however, have been extremely lacking. In the present work, through a series of pump probe experiments using VUV and XUV pulses, time scales for the non-adiabatic relaxation of the electronic excitation, hydrogen migration across the double bond, and H2 molecule elimination are measured and compared to theory. In the simpler oxygen molecule, excitation in the Schuman-Runge continuum leads to direct dissociation along the B 3[Sigma]u- potential energy curve. The time resolved photoion spectra show that the total photoionization cross section of the molecule resembles two oxygen atoms within 50 fs after excitation.

Ultrafast Phenomena in Molecular Sciences

Ultrafast Phenomena in Molecular Sciences PDF Author: Rebeca de Nalda
Publisher: Springer Science & Business Media
ISBN: 331902051X
Category : Science
Languages : en
Pages : 298

Get Book Here

Book Description
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.

Ultrafast Phenomena in Molecular Sciences

Ultrafast Phenomena in Molecular Sciences PDF Author: Rebeca de Nalda
Publisher: Springer
ISBN: 9783319020525
Category : Science
Languages : en
Pages : 287

Get Book Here

Book Description
This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the state-of-the-art research that is being carried out in the field of ultrafast molecular science, from theoretical developments, through new phenomena induced by intense laser fields, to the latest techniques applied to the study of molecular dynamics.

Ultrafast XUV Spectroscopy: Unveiling the Nature of Electronic Couplings in Molecular Dynamics

Ultrafast XUV Spectroscopy: Unveiling the Nature of Electronic Couplings in Molecular Dynamics PDF Author: Henry Timmers
Publisher:
ISBN:
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
Molecules are traditionally treated quantum mechanically using the Born-Oppenheimer formalism. In this formalism, different electronic states of the molecule are treated independently. However, most photo-initiated phenomena occurring in nature are driven by the couplings between different electronic states in both isolated molecules and molecular aggregates, and therefore occur beyond the Born-Oppenheimer formalism. These couplings are relevant in reactions relating to the perception of vision in the human eye, the oxidative damage and repair of DNA, the harvesting of light in photosynthesis, and the transfer of charge across large chains of molecules. While these reaction dynamics have traditionally been studied with visible and ultraviolet spectroscopy, attosecond XUV pulses formed through the process of high harmonic generation form a perfect tool for probing coupled electronic dynamics in molecules. In this thesis, I will present our work in using ultrafast, XUV spectroscopy to study these dynamics in molecules of increasing complexity. We begin by probing the relaxation dynamics of superexcited states in diatomic O2. These states can relax via two types of electronic couplings, either through autoionization or neutral dissociation. We find that our pump-probe scheme can disentangle the two relaxation mechanisms and independently measure their contributing lifetimes. Next, we present our work in observing a coherent electron hole wavepacket initiated by the ionization of polyatomic CO2 near a conical intersection. The electron-nuclear couplings near the conical intersection drive the electron hole between different orbital configurations. We find that we can not only measure the lifetime of quantum coherence in the electron hole wavepacket, but also control its evolution with a strong, infrared probing field. Finally, we propose an experiment to observe the migration of an electron hole across iodobenzene on the few-femtosecond timescale. We present experimental modifications made to the high harmonic generation set-up in order to probe this ultrafast and elusive charge migration. These results demonstrate the potential of ultrafast, XUV spectroscopy in probing the inner-workings of electronic couplings occurring in nature.

Ultrafast Molecular Dynamics Induced by FEW-femtosecond Ultraviolet Excitation

Ultrafast Molecular Dynamics Induced by FEW-femtosecond Ultraviolet Excitation PDF Author: Lorenzo Colaizzi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Femtochemistry And Femtobiology: Ultrafast Dynamics In Molecular Science

Femtochemistry And Femtobiology: Ultrafast Dynamics In Molecular Science PDF Author: Abderrazzak Douhal
Publisher: World Scientific
ISBN: 9814489336
Category : Science
Languages : en
Pages : 854

Get Book Here

Book Description
This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.

Ultrafast Dynamics Driven by Intense Light Pulses

Ultrafast Dynamics Driven by Intense Light Pulses PDF Author: Markus Kitzler
Publisher: Springer
ISBN: 3319201735
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
This book documents the recent vivid developments in the research field of ultrashort intense light pulses for probing and controlling ultrafast dynamics. The recent fascinating results in studying and controlling ultrafast dynamics in ever more complicated systems such as (bio-)molecules and structures of meso- to macroscopic sizes on ever shorter time-scales are presented. The book is written by some of the most eminent experimental and theoretical experts in the field. It covers the new groundbreaking research directions that were opened by the availability of new light sources such as fully controlled intense laser fields with durations down to a single oscillation cycle, short-wavelength laser-driven attosecond pulses and intense X-ray pulses from the upcoming free electron lasers. These light sources allowed the investigation of dynamics in atoms, molecules, clusters, on surfaces and very recently also in nanostructures and solids in new regimes of parameters which, in turn, led to the identification of completely new dynamics and methods for controlling it. Example topics covered by this book include the study of ultrafast processes in large molecules using attosecond pulses, control of ultrafast electron dynamics in solids with shaped femtosecond laser pulses, light-driven ultrafast plasmonic processes on surfaces and in nanostructures as well as research on atomic and molecular systems under intense X-ray radiation. This book is equally helpful for people who would like to step into this field (e.g. young researchers), for whom it provides a broad introduction, as well as for already experienced researchers who may enjoy the exhaustive discussion that covers the research on essentially all currently studied objects and with all available ultrafast pulse sources.

Photoinduced Molecular Dynamics in Solution

Photoinduced Molecular Dynamics in Solution PDF Author: Gianluca Levi
Publisher: Springer Nature
ISBN: 3030286118
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
This book explores novel computational strategies for simulating excess energy dissipation alongside transient structural changes in photoexcited molecules, and accompanying solvent rearrangements. It also demonstrates in detail the synergy between theoretical modelling and ultrafast experiments in unravelling various aspects of the reaction dynamics of solvated photocatalytic metal complexes. Transition metal complexes play an important role as photocatalysts in solar energy conversion, and the rational design of metal-based photocatalytic systems with improved efficiency hinges on the fundamental understanding of the mechanisms behind light-induced chemical reactions in solution. Theory and atomistic modelling hold the key to uncovering these ultrafast processes. Linking atomistic simulations and modern X-ray scattering experiments with femtosecond time resolution, the book highlights previously unexplored dynamical changes in molecules, and discusses the development of theoretical and computational frameworks capable of interpreting the underlying ultrafast phenomena.