Locally Analytic Vectors in Representations of Locally $p$-adic Analytic Groups

Locally Analytic Vectors in Representations of Locally $p$-adic Analytic Groups PDF Author: Matthew J. Emerton
Publisher: American Mathematical Soc.
ISBN: 0821875620
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various “radii of analyticity”). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoir he presents a development of locally analytic representation theory built around this point of view. The author has made a deliberate effort to keep the exposition reasonably self-contained and hopes that this will be of some benefit to the reader.

Locally Analytic Vectors in Representations of Locally $p$-adic Analytic Groups

Locally Analytic Vectors in Representations of Locally $p$-adic Analytic Groups PDF Author: Matthew J. Emerton
Publisher: American Mathematical Soc.
ISBN: 0821875620
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The goal of this memoir is to provide the foundations for the locally analytic representation theory that is required in three of the author's other papers on this topic. In the course of writing those papers the author found it useful to adopt a particular point of view on locally analytic representation theory: namely, regarding a locally analytic representation as being the inductive limit of its subspaces of analytic vectors (of various “radii of analyticity”). The author uses the analysis of these subspaces as one of the basic tools in his study of such representations. Thus in this memoir he presents a development of locally analytic representation theory built around this point of view. The author has made a deliberate effort to keep the exposition reasonably self-contained and hopes that this will be of some benefit to the reader.

p-adic Banach Space Representations

p-adic Banach Space Representations PDF Author: Dubravka Ban
Publisher: Springer Nature
ISBN: 3031226844
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
This book systematically develops the theory of continuous representations on p-adic Banach spaces. Its purpose is to lay the foundations of the representation theory of reductive p-adic groups on p-adic Banach spaces, explain the duality theory of Schneider and Teitelbaum, and demonstrate its applications to continuous principal series. Written to be accessible to graduate students, the book gives a comprehensive introduction to the necessary tools, including Iwasawa algebras, p-adic measures and distributions, p-adic functional analysis, reductive groups, and smooth and algebraic representations. Part 1 culminates with the duality between Banach space representations and Iwasawa modules. This duality is applied in Part 2 for studying the intertwining operators and reducibility of the continuous principal series on p-adic Banach spaces. This monograph is intended to serve both as a reference book and as an introductory text for graduate students and researchers entering the area.

p-Adic Lie Groups

p-Adic Lie Groups PDF Author: Peter Schneider
Publisher: Springer Science & Business Media
ISBN: 364221147X
Category : Mathematics
Languages : en
Pages : 259

Get Book Here

Book Description
Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.

Non-abelian Fundamental Groups and Iwasawa Theory

Non-abelian Fundamental Groups and Iwasawa Theory PDF Author: John Coates
Publisher: Cambridge University Press
ISBN: 1139505653
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory, fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory, algebraic geometry, topology and physics.

 PDF Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191

Get Book Here

Book Description


Analytic Pro-P Groups

Analytic Pro-P Groups PDF Author: J. D. Dixon
Publisher: Cambridge University Press
ISBN: 9780521542180
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
An up-to-date treatment of analytic pro-p groups for graduate students and researchers.

Groups St Andrews 2013

Groups St Andrews 2013 PDF Author: C. M. Campbell
Publisher: Cambridge University Press
ISBN: 1316467910
Category : Mathematics
Languages : en
Pages : 503

Get Book Here

Book Description
Every four years, leading researchers gather to survey the latest developments in all aspects of group theory. Since 1981, the proceedings of those meetings have provided a regular snapshot of the state of the art in group theory and helped to shape the direction of research in the field. This volume contains selected papers from the 2013 meeting held in St Andrews. It begins with major articles from each of the four main speakers: Emmanuel Breuillard (Paris-Sud), Martin Liebeck (Imperial College London), Alan Reid (Texas) and Karen Vogtmann (Cornell). These are followed by, in alphabetical order, survey articles contributed by other conference participants, which cover a wide spectrum of modern group theory.

$p$-adic Geometry

$p$-adic Geometry PDF Author: Matthew Baker
Publisher: American Mathematical Soc.
ISBN: 0821844687
Category : Mathematics
Languages : en
Pages : 220

Get Book Here

Book Description
"In recent decades, p-adic geometry and p-adic cohomology theories have become indispensable tools in number theory, algebraic geometry, and the theory of automorphic representations. The Arizona Winter Schoo1 2007, on which the current book is based, was a unique opportunity to introduce graduate students to this subject." "Following invaluable introductions by John Tate and Vladimir Berkovich, two pioneers of non-archimedean geometry, Brian Conrad's chapter introduces the general theory of Tate's rigid analytic spaces, Raynaud's view of them as the generic fibers of formal schemes, and Berkovich spaces. Samit Dasgupta and Jeremy Teitelbaum discuss the p-adic upper half plane as an example of a rigid analytic space and give applications to number theory (modular forms and the p-adic Langlands program). Matthew Baker offers a detailed discussion of the Berkovich projective line and p-adic potential theory on that and more general Berkovich curves. Finally, Kiran Kedlaya discusses theoretical and computational aspects of p-adic cohomology and the zeta functions of varieties. This book will be a welcome addition to the library of any graduate student and researcher who is interested in learning about the techniques of p-adic geometry."--BOOK JACKET.

Automorphic Forms and Galois Representations

Automorphic Forms and Galois Representations PDF Author: Fred Diamond
Publisher: Cambridge University Press
ISBN: 1107691923
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
Part one of a two-volume collection exploring recent developments in number theory related to automorphic forms and Galois representations.

Automorphic Forms and Galois Representations: Volume 1

Automorphic Forms and Galois Representations: Volume 1 PDF Author: Fred Diamond
Publisher: Cambridge University Press
ISBN: 1316062333
Category : Mathematics
Languages : en
Pages : 385

Get Book Here

Book Description
Automorphic forms and Galois representations have played a central role in the development of modern number theory, with the former coming to prominence via the celebrated Langlands program and Wiles' proof of Fermat's Last Theorem. This two-volume collection arose from the 94th LMS-EPSRC Durham Symposium on 'Automorphic Forms and Galois Representations' in July 2011, the aim of which was to explore recent developments in this area. The expository articles and research papers across the two volumes reflect recent interest in p-adic methods in number theory and representation theory, as well as recent progress on topics from anabelian geometry to p-adic Hodge theory and the Langlands program. The topics covered in volume one include the Shafarevich Conjecture, effective local Langlands correspondence, p-adic L-functions, the fundamental lemma, and other topics of contemporary interest.