Author: Mohamed Farhat
Publisher: CRC Press
ISBN: 1315341085
Category : Science
Languages : en
Pages : 411
Book Description
Space–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat’s principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks. This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.
Transformation Wave Physics
University Physics
Author: OpenStax
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Publisher:
ISBN: 9781680920451
Category : Science
Languages : en
Pages : 622
Book Description
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Transformation Electromagnetics and Metamaterials
Author: Douglas H. Werner
Publisher: Springer Science & Business Media
ISBN: 1447149963
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Publisher: Springer Science & Business Media
ISBN: 1447149963
Category : Technology & Engineering
Languages : en
Pages : 500
Book Description
Transformation electromagnetics is a systematic design technique for optical and electromagnetic devices that enables novel wave-material interaction properties. The associated metamaterials technology for designing and realizing optical and electromagnetic devices can control the behavior of light and electromagnetic waves in ways that have not been conventionally possible. The technique is credited with numerous novel device designs, most notably the invisibility cloaks, perfect lenses and a host of other remarkable devices. Transformation Electromagnetics and Metamaterials: Fundamental Principles and Applications presents a comprehensive treatment of the rapidly growing area of transformation electromagnetics and related metamaterial technology with contributions on the subject provided by a collection of leading experts from around the world. On the theoretical side, the following questions will be addressed: “Where does transformation electromagnetics come from?,” “What are the general material properties for different classes of coordinate transformations?,” “What are the limitations and challenges of device realizations?,” and “What theoretical tools are available to make the coordinate transformation-based designs more amenable to fabrication using currently available techniques?” The comprehensive theoretical treatment will be complemented by device designs and/or realizations in various frequency regimes and applications including acoustic, radio frequency, terahertz, infrared, and the visible spectrum. The applications encompass invisibility cloaks, gradient-index lenses in the microwave and optical regimes, negative-index superlenses for sub-wavelength resolution focusing, flat lenses that produce highly collimated beams from an embedded antenna or optical source, beam concentrators, polarization rotators and splitters, perfect electromagnetic absorbers, and many others. This book will serve as the authoritative reference for students and researchers alike to the fast-evolving and exciting research area of transformation electromagnetics/optics, its application to the design of revolutionary new devices, and their associated metamaterial realizations.
Solitons
Author: P. G. Drazin
Publisher: Cambridge University Press
ISBN: 9780521336550
Category : Mathematics
Languages : en
Pages : 244
Book Description
This textbook is an introduction to the theory of solitons in the physical sciences.
Publisher: Cambridge University Press
ISBN: 9780521336550
Category : Mathematics
Languages : en
Pages : 244
Book Description
This textbook is an introduction to the theory of solitons in the physical sciences.
Particle Or Wave
Author: Charis Anastopoulos
Publisher: Princeton University Press
ISBN: 9780691135120
Category : Science
Languages : en
Pages : 444
Book Description
'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.
Publisher: Princeton University Press
ISBN: 9780691135120
Category : Science
Languages : en
Pages : 444
Book Description
'Particle or Wave' explains the origins and development of modern physical concepts about matter and the controversies surrounding them.
Rogue Waves
Author: Boling Guo
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110470578
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110470578
Category : Mathematics
Languages : en
Pages : 212
Book Description
This book gives an overview of the theoretical research on rogue waves and discusses solutions to rogue wave formation via the Darboux and bilinear transformations, algebro-geometric reduction, and inverse scattering and similarity transformations. Studies on nonlinear optics are included, making the book a comprehensive reference for researchers in applied mathematics, optical physics, geophysics, and ocean engineering. Contents The Research Process for Rogue Waves Construction of Rogue Wave Solution by the Generalized Darboux Transformation Construction of Rogue Wave Solution by Hirota Bilinear Method, Algebro-geometric Approach and Inverse Scattering Method The Rogue Wave Solution and Parameters Managing in Nonautonomous Physical Model
Introduction to the Mathematical Physics of Nonlinear Waves
Author: Minoru Fujimoto
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Publisher: Morgan & Claypool Publishers
ISBN: 1627052771
Category : Science
Languages : en
Pages : 217
Book Description
Nonlinear physics is a well-established discipline in physics today, and this book offers a comprehensive account of the basic soliton theory and its applications. Although primarily mathematical, the theory for nonlinear phenomena in practical environment
Almost All about Waves
Author: John Robinson Pierce
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 244
Book Description
This text considers waves the great unifying concept of physics. With minimal mathematics, it emphasizes the behavior common to phenomena such as earthquake waves, ocean waves, sound waves, and mechanical waves. Topics include velocity, vector and complex representation, energy and momentum, coupled modes, polarization, diffraction, and radiation. 1974 edition.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 244
Book Description
This text considers waves the great unifying concept of physics. With minimal mathematics, it emphasizes the behavior common to phenomena such as earthquake waves, ocean waves, sound waves, and mechanical waves. Topics include velocity, vector and complex representation, energy and momentum, coupled modes, polarization, diffraction, and radiation. 1974 edition.
Computer Modelling of Structural Transformations of Nanopores in Fcc Metals
Author: M.D. Starostenkov
Publisher: Materials Research Forum LLC
ISBN: 1644900505
Category : Technology & Engineering
Languages : en
Pages : 131
Book Description
The book focuses on the effects of shock waves on vacancies and their clusters in fcc crystals. It is shown that high-speed cooperative atomic displacements represent a powerful tool for the purposeful modification of defect structures in crystalline bodies. The results are important for radiation material science, nano-engineering, the study of shock wave effects and the ultrasonic treatment of materials. Keywords: Computer Modelling of Nanopores, Molecular Dynamics, Fcc Metals, Defect Structures in Crystals, Radiation Material Science, Nano-Engineering of Materials, Ultrasonic Treatment of Materials, Radiation Induced Defects, Vacancy Clusters, Shock Wave Effects, Radiation-Resistant Materials, Thermomechanical Processing, Energy Transfer Mechanism, Nanopore Nucleation, Nanopore Based Filters, Nanopore Based Detectors, Cooling Elements in Nano-Electronics.
Publisher: Materials Research Forum LLC
ISBN: 1644900505
Category : Technology & Engineering
Languages : en
Pages : 131
Book Description
The book focuses on the effects of shock waves on vacancies and their clusters in fcc crystals. It is shown that high-speed cooperative atomic displacements represent a powerful tool for the purposeful modification of defect structures in crystalline bodies. The results are important for radiation material science, nano-engineering, the study of shock wave effects and the ultrasonic treatment of materials. Keywords: Computer Modelling of Nanopores, Molecular Dynamics, Fcc Metals, Defect Structures in Crystals, Radiation Material Science, Nano-Engineering of Materials, Ultrasonic Treatment of Materials, Radiation Induced Defects, Vacancy Clusters, Shock Wave Effects, Radiation-Resistant Materials, Thermomechanical Processing, Energy Transfer Mechanism, Nanopore Nucleation, Nanopore Based Filters, Nanopore Based Detectors, Cooling Elements in Nano-Electronics.
Physics of Oscillations and Waves
Author: Arnt Inge Vistnes
Publisher: Springer
ISBN: 3319723146
Category : Science
Languages : en
Pages : 584
Book Description
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.
Publisher: Springer
ISBN: 3319723146
Category : Science
Languages : en
Pages : 584
Book Description
In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.