Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Strengthening Deep Neural Networks
Author: Katy Warr
Publisher: "O'Reilly Media, Inc."
ISBN: 1492044903
Category : Computers
Languages : en
Pages : 233
Book Description
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Publisher: "O'Reilly Media, Inc."
ISBN: 1492044903
Category : Computers
Languages : en
Pages : 233
Book Description
As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come
Introduction to Neural Network Verification
Author: Aws Albarghouthi
Publisher:
ISBN: 9781680839104
Category :
Languages : en
Pages : 182
Book Description
Over the past decade, a number of hardware and software advances have conspired to thrust deep learning and neural networks to the forefront of computing. Deep learning has created a qualitative shift in our conception of what software is and what it can do: Every day we're seeing new applications of deep learning, from healthcare to art, and it feels like we're only scratching the surface of a universe of new possibilities. This book offers the first introduction of foundational ideas from automated verification as applied to deep neural networks and deep learning. It is divided into three parts: Part 1 defines neural networks as data-flow graphs of operators over real-valued inputs. Part 2 discusses constraint-based techniques for verification. Part 3 discusses abstraction-based techniques for verification. The book is a self-contained treatment of a topic that sits at the intersection of machine learning and formal verification. It can serve as an introduction to the field for first-year graduate students or senior undergraduates, even if they have not been exposed to deep learning or verification.
Publisher:
ISBN: 9781680839104
Category :
Languages : en
Pages : 182
Book Description
Over the past decade, a number of hardware and software advances have conspired to thrust deep learning and neural networks to the forefront of computing. Deep learning has created a qualitative shift in our conception of what software is and what it can do: Every day we're seeing new applications of deep learning, from healthcare to art, and it feels like we're only scratching the surface of a universe of new possibilities. This book offers the first introduction of foundational ideas from automated verification as applied to deep neural networks and deep learning. It is divided into three parts: Part 1 defines neural networks as data-flow graphs of operators over real-valued inputs. Part 2 discusses constraint-based techniques for verification. Part 3 discusses abstraction-based techniques for verification. The book is a self-contained treatment of a topic that sits at the intersection of machine learning and formal verification. It can serve as an introduction to the field for first-year graduate students or senior undergraduates, even if they have not been exposed to deep learning or verification.
Pattern Recognition. ICPR International Workshops and Challenges
Author: Alberto Del Bimbo
Publisher: Springer Nature
ISBN: 3030687902
Category : Computers
Languages : en
Pages : 753
Book Description
This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.
Publisher: Springer Nature
ISBN: 3030687902
Category : Computers
Languages : en
Pages : 753
Book Description
This 8-volumes set constitutes the refereed of the 25th International Conference on Pattern Recognition Workshops, ICPR 2020, held virtually in Milan, Italy and rescheduled to January 10 - 11, 2021 due to Covid-19 pandemic. The 416 full papers presented in these 8 volumes were carefully reviewed and selected from about 700 submissions. The 46 workshops cover a wide range of areas including machine learning, pattern analysis, healthcare, human behavior, environment, surveillance, forensics and biometrics, robotics and egovision, cultural heritage and document analysis, retrieval, and women at ICPR2020.
Software Reliability Methods
Author: Doron A. Peled
Publisher: Springer Science & Business Media
ISBN: 1475735405
Category : Computers
Languages : en
Pages : 344
Book Description
This book presents current methods for dealing with software reliability, illustrating the advantages and disadvantages of each method. The description of the techniques is intended for a non-expert audience with some minimal technical background. It also describes some advanced techniques, aimed at researchers and practitioners in software engineering. This reference will serve as an introduction to formal methods and techniques and will be a source for learning about various ways to enhance software reliability. Various projects and exercises give readers hands-on experience with the various formal methods and tools.
Publisher: Springer Science & Business Media
ISBN: 1475735405
Category : Computers
Languages : en
Pages : 344
Book Description
This book presents current methods for dealing with software reliability, illustrating the advantages and disadvantages of each method. The description of the techniques is intended for a non-expert audience with some minimal technical background. It also describes some advanced techniques, aimed at researchers and practitioners in software engineering. This reference will serve as an introduction to formal methods and techniques and will be a source for learning about various ways to enhance software reliability. Various projects and exercises give readers hands-on experience with the various formal methods and tools.
Efficient Processing of Deep Neural Networks
Author: Vivienne Sze
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Publisher: Springer Nature
ISBN: 3031017668
Category : Technology & Engineering
Languages : en
Pages : 254
Book Description
This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.
Computer Vision – ECCV 2020 Workshops
Author: Adrien Bartoli
Publisher: Springer Nature
ISBN: 3030664155
Category : Computers
Languages : en
Pages : 818
Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part I focusses on adversarial robustness in the real world; bioimage computation; egocentric perception, interaction and computing; eye gaze in VR, AR, and in the wild; TASK-CV workshop and VisDA challenge; and bodily expressed emotion understanding.
Publisher: Springer Nature
ISBN: 3030664155
Category : Computers
Languages : en
Pages : 818
Book Description
The 6-volume set, comprising the LNCS books 12535 until 12540, constitutes the refereed proceedings of 28 out of the 45 workshops held at the 16th European Conference on Computer Vision, ECCV 2020. The conference was planned to take place in Glasgow, UK, during August 23-28, 2020, but changed to a virtual format due to the COVID-19 pandemic. The 249 full papers, 18 short papers, and 21 further contributions included in the workshop proceedings were carefully reviewed and selected from a total of 467 submissions. The papers deal with diverse computer vision topics. Part I focusses on adversarial robustness in the real world; bioimage computation; egocentric perception, interaction and computing; eye gaze in VR, AR, and in the wild; TASK-CV workshop and VisDA challenge; and bodily expressed emotion understanding.
New Era for Robust Speech Recognition
Author: Shinji Watanabe
Publisher: Springer
ISBN: 331964680X
Category : Computers
Languages : en
Pages : 433
Book Description
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.
Publisher: Springer
ISBN: 331964680X
Category : Computers
Languages : en
Pages : 433
Book Description
This book covers the state-of-the-art in deep neural-network-based methods for noise robustness in distant speech recognition applications. It provides insights and detailed descriptions of some of the new concepts and key technologies in the field, including novel architectures for speech enhancement, microphone arrays, robust features, acoustic model adaptation, training data augmentation, and training criteria. The contributed chapters also include descriptions of real-world applications, benchmark tools and datasets widely used in the field. This book is intended for researchers and practitioners working in the field of speech processing and recognition who are interested in the latest deep learning techniques for noise robustness. It will also be of interest to graduate students in electrical engineering or computer science, who will find it a useful guide to this field of research.
Automated Machine Learning
Author: Frank Hutter
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Publisher: Springer
ISBN: 3030053180
Category : Computers
Languages : en
Pages : 223
Book Description
This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.
Computer Vision – ECCV 2022
Author: Shai Avidan
Publisher: Springer Nature
ISBN: 3031200535
Category : Computers
Languages : en
Pages : 803
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.
Publisher: Springer Nature
ISBN: 3031200535
Category : Computers
Languages : en
Pages : 803
Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.