Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging

Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging PDF Author: Catherine Elizabeth Chang
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 237

Get Book Here

Book Description
Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast is a powerful technique for non-invasive measurement of brain activity. Recent fMRI studies have revealed that the spontaneous BOLD fluctuations of the human brain organize into distributed, temporally-coherent networks ("resting-state networks"; RSNs). Examination of RSNs has yielded valuable insight into neural organization and development, and demonstrates potential as a biomarker for conditions such as Alzheimer's disease and depression. However, the accuracy by which the spatio-temporal properties of RSNs can be delineated using fMRI is compromised by the presence of physiological (cardiac and respiratory) noise and vascular hemodynamic variability. Further, our present understanding of how RSNs may interact and support cognitive function has been limited by the fact that the vast majority of studies to-date analyze RSNs in a manner that assumes temporal stationarity. Here, we describe efforts to correct for non-neural physiological influences on the BOLD signal, as well as investigations into the dynamic character of resting-state network connectivity. It is found that low-frequency variations in cardiac and respiratory processes account for significant noise across widespread gray matter regions, and that a constrained deconvolution approach may prove effective for modeling and reducing their effects. Application of the proposed noise-reduction procedure is observed to yield negative correlations between the spontaneous fluctuations of two major RSNs. The relationship between respiratory volume changes and the BOLD signal is further examined by simultaneously monitoring and comparing chest expansion data, end-tidal gas concentrations, and spontaneous BOLD fluctuations. The use of a breath-holding task is proposed for quantifying regional differences in BOLD signal timing that arise from local vasomotor response delays; such non-neural timing delays are found to impact inferences of resting-state connectivity and causality. Finally, a preliminary analysis of non-stationary connectivity between RSNs is performed using wavelet and sliding-window approaches, and it is observed that interactions between networks may reconfigure on time-scales of seconds to minutes.

Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging

Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging PDF Author: Catherine Elizabeth Chang
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 237

Get Book Here

Book Description
Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast is a powerful technique for non-invasive measurement of brain activity. Recent fMRI studies have revealed that the spontaneous BOLD fluctuations of the human brain organize into distributed, temporally-coherent networks ("resting-state networks"; RSNs). Examination of RSNs has yielded valuable insight into neural organization and development, and demonstrates potential as a biomarker for conditions such as Alzheimer's disease and depression. However, the accuracy by which the spatio-temporal properties of RSNs can be delineated using fMRI is compromised by the presence of physiological (cardiac and respiratory) noise and vascular hemodynamic variability. Further, our present understanding of how RSNs may interact and support cognitive function has been limited by the fact that the vast majority of studies to-date analyze RSNs in a manner that assumes temporal stationarity. Here, we describe efforts to correct for non-neural physiological influences on the BOLD signal, as well as investigations into the dynamic character of resting-state network connectivity. It is found that low-frequency variations in cardiac and respiratory processes account for significant noise across widespread gray matter regions, and that a constrained deconvolution approach may prove effective for modeling and reducing their effects. Application of the proposed noise-reduction procedure is observed to yield negative correlations between the spontaneous fluctuations of two major RSNs. The relationship between respiratory volume changes and the BOLD signal is further examined by simultaneously monitoring and comparing chest expansion data, end-tidal gas concentrations, and spontaneous BOLD fluctuations. The use of a breath-holding task is proposed for quantifying regional differences in BOLD signal timing that arise from local vasomotor response delays; such non-neural timing delays are found to impact inferences of resting-state connectivity and causality. Finally, a preliminary analysis of non-stationary connectivity between RSNs is performed using wavelet and sliding-window approaches, and it is observed that interactions between networks may reconfigure on time-scales of seconds to minutes.

Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging

Toward Improved Characterization of Brain Network Temporal Properties with Functional Magnetic Resonance Imaging PDF Author: Catherine Elizabeth Chang
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Functional magnetic resonance imaging (fMRI) based on blood-oxygen level dependent (BOLD) contrast is a powerful technique for non-invasive measurement of brain activity. Recent fMRI studies have revealed that the spontaneous BOLD fluctuations of the human brain organize into distributed, temporally-coherent networks ("resting-state networks"; RSNs). Examination of RSNs has yielded valuable insight into neural organization and development, and demonstrates potential as a biomarker for conditions such as Alzheimer's disease and depression. However, the accuracy by which the spatio-temporal properties of RSNs can be delineated using fMRI is compromised by the presence of physiological (cardiac and respiratory) noise and vascular hemodynamic variability. Further, our present understanding of how RSNs may interact and support cognitive function has been limited by the fact that the vast majority of studies to-date analyze RSNs in a manner that assumes temporal stationarity. Here, we describe efforts to correct for non-neural physiological influences on the BOLD signal, as well as investigations into the dynamic character of resting-state network connectivity. It is found that low-frequency variations in cardiac and respiratory processes account for significant noise across widespread gray matter regions, and that a constrained deconvolution approach may prove effective for modeling and reducing their effects. Application of the proposed noise-reduction procedure is observed to yield negative correlations between the spontaneous fluctuations of two major RSNs. The relationship between respiratory volume changes and the BOLD signal is further examined by simultaneously monitoring and comparing chest expansion data, end-tidal gas concentrations, and spontaneous BOLD fluctuations. The use of a breath-holding task is proposed for quantifying regional differences in BOLD signal timing that arise from local vasomotor response delays; such non-neural timing delays are found to impact inferences of resting-state connectivity and causality. Finally, a preliminary analysis of non-stationary connectivity between RSNs is performed using wavelet and sliding-window approaches, and it is observed that interactions between networks may reconfigure on time-scales of seconds to minutes.

Handbook of MRI Pulse Sequences

Handbook of MRI Pulse Sequences PDF Author: Matt A. Bernstein
Publisher: Elsevier
ISBN: 0080533124
Category : Mathematics
Languages : en
Pages : 1041

Get Book Here

Book Description
Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems

Magnetic Resonance Imaging of Healthy and Diseased Brain Networks

Magnetic Resonance Imaging of Healthy and Diseased Brain Networks PDF Author: Yong He
Publisher: Frontiers Media SA
ISBN: 2889194353
Category : Brain
Languages : en
Pages : 366

Get Book Here

Book Description
An important aspect of neuroscience is to characterize the underlying connectivity patterns of the human brain (i.e., human connectomics). Over the past few years, researchers have demonstrated that by combining a variety of different neuroimaging technologies (e.g., structural MRI, diffusion MRI and functional MRI) with sophisticated analytic strategies such as graph theory, it is possible to noninvasively map the patterns of structural and functional connectivity of human whole-brain networks. With these novel approaches, many studies have shown that human brain networks have nonrandom properties such as modularity, small-worldness and highly connected hubs. Importantly, these quantifiable network properties change with age, learning and disease. Moreover, there is growing evidence for behavioral and genetic correlates. Network analysis of neuroimaging data is opening up a new avenue of research into the understanding of the organizational principles of the brain that will be of interest for all basic scientists and clinical researchers. Such approaches are powerful but there are a number of challenging issues when extracting reliable brain networks from various imaging modalities and analyzing the topological properties, e.g., definitions of network nodes and edges and reproducibility of network analysis. We assembled contributions related to the state-of-the-art methodologies of brain connectivity and the applications involving development, aging and neuropsychiatric disorders such as Alzheimer’s disease, schizophrenia, attention deficit hyperactivity disorder and mood and anxiety disorders. It is anticipated that the articles in this Research Topic will provide a greater range and depth of provision for the field of imaging connectomics.

Temporal Features in Resting State fMRI Data

Temporal Features in Resting State fMRI Data PDF Author: Xiaoping Philip Hu
Publisher: Frontiers Media SA
ISBN: 2889664082
Category : Science
Languages : en
Pages : 136

Get Book Here

Book Description


fMRI Neurofeedback

fMRI Neurofeedback PDF Author: Michelle Hampson
Publisher: Academic Press
ISBN: 0128224363
Category : Computers
Languages : en
Pages : 366

Get Book Here

Book Description
fMRI Neurofeedback provides a perspective on how the field of functional magnetic resonance imaging (fMRI) neurofeedback has evolved, an introduction to state-of-the-art methods used for fMRI neurofeedback, a review of published neuroscientific and clinical applications, and a discussion of relevant ethical considerations. It gives a view of the ongoing research challenges throughout and provides guidance for researchers new to the field on the practical implementation and design of fMRI neurofeedback protocols. This book is designed to be accessible to all scientists and clinicians interested in conducting fMRI neurofeedback research, addressing the variety of different knowledge gaps that readers may have given their varied backgrounds and avoiding field-specific jargon. The book, therefore, will be suitable for engineers, computer scientists, neuroscientists, psychologists, and physicians working in fMRI neurofeedback. Provides a reference on fMRI neurofeedback covering history, methods, mechanisms, clinical applications, and basic research, as well as ethical considerations Offers contributions from international experts—leading research groups are represented, including from Europe, Japan, Israel, and the United States Includes coverage of data analytic methods, study design, neuroscience mechanisms, and clinical considerations Presents a perspective on future translational development

Characterization of Spatial and Temporal Brain Activation Patterns in Functional Magnetic Resonance Imaging Data

Characterization of Spatial and Temporal Brain Activation Patterns in Functional Magnetic Resonance Imaging Data PDF Author: Jae-Min Lee
Publisher:
ISBN:
Category : Brain
Languages : en
Pages :

Get Book Here

Book Description
From a signal processing perspective, we expect that our two frameworks could contribute to better characterizing brain activation patterns.

Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging PDF Author: Nicole Seiberlich
Publisher: Academic Press
ISBN: 0128170581
Category : Computers
Languages : en
Pages : 1094

Get Book Here

Book Description
Quantitative Magnetic Resonance Imaging is a ‘go-to’ reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: The basic physics behind tissue property mapping How to implement basic pulse sequences for the quantitative measurement of tissue properties The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* The pros and cons for different approaches to mapping perfusion The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor maps and more complex representations of diffusion How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance Fingerprinting can be used to accelerate or improve tissue property mapping schemes How tissue property mapping is used clinically in different organs Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches

Functional Imaging Connectome of the Human Brain and Its Associations with Biological and Behavioral Characteristics

Functional Imaging Connectome of the Human Brain and Its Associations with Biological and Behavioral Characteristics PDF Author: Chao Zhang
Publisher:
ISBN:
Category : Brain
Languages : en
Pages : 153

Get Book Here

Book Description
"Functional connectome of the human brain explores the temporal associations of different brain regions. Functional connectivity (FC) measures derived from resting state functional magnetic resonance imaging (rfMRI) characterize the brain network at rest and studies have shown that rfMRI FC is closely related to individual subject's biological and behavioral measures. In this thesis we investigate a large rfMRI dataset from the Human Connectome Project (HCP) and utilize statistical methods to facilitate the understanding of fundamental FC-behavior associations of the human brain. Our studies include reliability analysis of FC statistics, demonstration of FC spatial patterns, and predictive analysis of individual biological and behavioral measures using FC features. Covering both static and dynamic FC (sFC and dFC) characterizations, the baseline FC patterns in healthy young adults are illustrated. Predictive analyses demonstrate that individual biological and behavioral measures, such as gender, age, fluid intelligence and language scores, can be predicted using FC. While dFC by itself performs worse than sFC in prediction accuracy, if appropriate parameters and models are utilized, adding dFC features to sFC can significantly increase the predictive power. Results of this thesis contribute to the understanding of the neural underpinnings of individual biological and behavioral differences in the human brain."--Abstract.

Magnetic Resonance Diffusion Characterization of Brain Diseases

Magnetic Resonance Diffusion Characterization of Brain Diseases PDF Author: Ying Ding
Publisher: Open Dissertation Press
ISBN: 9781361304884
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Magnetic Resonance Diffusion Characterization of Brain Diseases" by 丁莹, Ying, Ding, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: Magnetic resonance imaging (MRI) is a valuable imaging technique. It provides excellent soft tissue contrast and multi-parametric non-invasive imaging protocols. Among those various techniques, diffusion MRI measures the water diffusion properties of biological tissue. It is a useful tool in characterizing various brain tissue microstructures quantitatively. With its rapid development, it is emerging that subtle changes can be probed by diffusion tensor imaging (DTI) quantitation. The objectives of this doctoral work are to access the subtle microstructural alterations in rodent brains due to hemodynamic changes, fear conditioning and sleep deprivation using in vivo DTI. With the improved reproducibility and specificity achieved by using advanced post-processing and animal preparation procedures, in vivo DTI is expected to be useful to explore the underlying biological mechanisms for posttraumatic stress disorder and memory deficit following sleep loss in human. Firstly, as DTI could be influenced by the presence of water molecules in brain vasculature, for better understand the reproducibility and sensitivity of in vivo DTI measurements, conventional DTI protocol was applied to a well-controlled rat model of hypercapnia. Our data demonstrated that diffusivities increased in whole brain, gray and white matter regions in response to hypercapnia. These results indicate that in vivo DTI quantitation in brain can be interfered by vascular factors on the order of few percents. Cautions should be taken in designing and interpreting quantitative DTI studies as all DTI indices can be potentially confounded by physiologic conditions, cerebrovascular and hemodynamic characteristics. Secondly, recent DTI studies have shown detection of long-term neural plasticity weeks to months following relatively extensive periods of training in animals. However, rapid plasticity within a short period (24 hours) after learning is important for observing the time course of training-evoked changes and narrow down candidate mechanisms. Fear conditioning (FC), which typically occurs over a short timescale (in minutes), was selected as a paradigm for investigation. Using voxel-wise repeated measures analysis, FA was found to increase in amygdala and decrease in hippocampus 1-hour post-FC, and it reversed in both regions 1-day post-FC. Results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing post-traumatic stress disorder. Thirdly, in vivo DTI was employed to access regional specific microstructural changes following rapid eye movement sleep deprivation (SD), and explore possible temporal differentiation of these changes. With voxel-base analysis, MD is found to decrease in post-SD time points in bilateral hippocampi and cerebral cortex. The distributions of these clusters exhibited differentiable layer specific patterns, which were pointing to dentate gyrus and CA1 layer in hippocampus, and parietal cortex and barrel field layers in cerebral cortex. Results indicate that in vivo DTI is capable to detect microstructural changes in specific layers and reveal temporal distinction between them. These specific layers are possibly more susceptible to sleep loss, and the temporal distinction of changes between these