Winding Around

Winding Around PDF Author: John Roe
Publisher: American Mathematical Soc.
ISBN: 1470421984
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.

Winding Around

Winding Around PDF Author: John Roe
Publisher: American Mathematical Soc.
ISBN: 1470421984
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.

Elementary Concepts of Topology

Elementary Concepts of Topology PDF Author: Paul Alexandroff
Publisher: Courier Corporation
ISBN: 0486155064
Category : Mathematics
Languages : en
Pages : 68

Get Book Here

Book Description
Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.

Algebraic Topology

Algebraic Topology PDF Author: Allen Hatcher
Publisher: Cambridge University Press
ISBN: 9780521795401
Category : Mathematics
Languages : en
Pages : 572

Get Book Here

Book Description
An introductory textbook suitable for use in a course or for self-study, featuring broad coverage of the subject and a readable exposition, with many examples and exercises.

Knots and Primes

Knots and Primes PDF Author: Masanori Morishita
Publisher: Springer Nature
ISBN: 9819992559
Category :
Languages : en
Pages : 268

Get Book Here

Book Description


Dynamics: Topology and Numbers

Dynamics: Topology and Numbers PDF Author: Pieter Moree
Publisher: American Mathematical Soc.
ISBN: 147045100X
Category : Education
Languages : en
Pages : 360

Get Book Here

Book Description
This volume contains the proceedings of the conference Dynamics: Topology and Numbers, held from July 2–6, 2018, at the Max Planck Institute for Mathematics, Bonn, Germany. The papers cover diverse fields of mathematics with a unifying theme of relation to dynamical systems. These include arithmetic geometry, flat geometry, complex dynamics, graph theory, relations to number theory, and topological dynamics. The volume is dedicated to the memory of Sergiy Kolyada and also contains some personal accounts of his life and mathematics.

Numbers

Numbers PDF Author: Heinz-Dieter Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 9780387974972
Category : Mathematics
Languages : en
Pages : 424

Get Book Here

Book Description
This book is about all kinds of numbers, from rationals to octonians, reals to infinitesimals. It is a story about a major thread of mathematics over thousands of years, and it answers everything from why Hamilton was obsessed with quaternions to what the prospect was for quaternionic analysis in the 19th century. It glimpses the mystery surrounding imaginary numbers in the 17th century and views some major developments of the 20th century.

Fundamentals of Number Theory

Fundamentals of Number Theory PDF Author: William J. LeVeque
Publisher: Courier Corporation
ISBN: 0486141500
Category : Mathematics
Languages : en
Pages : 292

Get Book Here

Book Description
This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

Contributions to the Founding of the Theory of Transfinite Numbers

Contributions to the Founding of the Theory of Transfinite Numbers PDF Author: Georg Cantor
Publisher:
ISBN:
Category : Set theory
Languages : en
Pages : 248

Get Book Here

Book Description


Elementary Topology

Elementary Topology PDF Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.

Geometry of Continued Fractions

Geometry of Continued Fractions PDF Author: Oleg Karpenkov
Publisher: Springer Science & Business Media
ISBN: 3642393683
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.