Theory of Function Spaces III

Theory of Function Spaces III PDF Author: Hans Triebel
Publisher: Springer Science & Business Media
ISBN: 3764375825
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.

Theory of Function Spaces III

Theory of Function Spaces III PDF Author: Hans Triebel
Publisher: Springer Science & Business Media
ISBN: 3764375825
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
This volume presents the recent theory of function spaces, paying special attention to some recent developments related to neighboring areas such as numerics, signal processing, and fractal analysis. Local building blocks, in particular (non-smooth) atoms, quarks, wavelet bases and wavelet frames are considered in detail and applied to diverse problems, including a local smoothness theory, spaces on Lipschitz domains, and fractal analysis.

Classical Fourier Analysis

Classical Fourier Analysis PDF Author: Loukas Grafakos
Publisher: Springer Science & Business Media
ISBN: 0387094326
Category : Mathematics
Languages : en
Pages : 494

Get Book Here

Book Description
The primary goal of this text is to present the theoretical foundation of the field of Fourier analysis. This book is mainly addressed to graduate students in mathematics and is designed to serve for a three-course sequence on the subject. The only prerequisite for understanding the text is satisfactory completion of a course in measure theory, Lebesgue integration, and complex variables. This book is intended to present the selected topics in some depth and stimulate further study. Although the emphasis falls on real variable methods in Euclidean spaces, a chapter is devoted to the fundamentals of analysis on the torus. This material is included for historical reasons, as the genesis of Fourier analysis can be found in trigonometric expansions of periodic functions in several variables. While the 1st edition was published as a single volume, the new edition will contain 120 pp of new material, with an additional chapter on time-frequency analysis and other modern topics. As a result, the book is now being published in 2 separate volumes, the first volume containing the classical topics (Lp Spaces, Littlewood-Paley Theory, Smoothness, etc...), the second volume containing the modern topics (weighted inequalities, wavelets, atomic decomposition, etc...). From a review of the first edition: “Grafakos’s book is very user-friendly with numerous examples illustrating the definitions and ideas. It is more suitable for readers who want to get a feel for current research. The treatment is thoroughly modern with free use of operators and functional analysis. Morever, unlike many authors, Grafakos has clearly spent a great deal of time preparing the exercises.” - Ken Ross, MAA Online

Topics in Fourier Analysis and Function Spaces

Topics in Fourier Analysis and Function Spaces PDF Author: Hans-Jurgen Schmeisser
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
A book dealing with several classes of Besov-Hardy-Sobolev function spaces on the Euclidean n-space and the n-torus. Periodic, weighted and anisotropic spaces are discussed, as well as spaces in which properties of dominating mixed smoothness predominate.

Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis

Fourier Series, Fourier Transforms, and Function Spaces: A Second Course in Analysis PDF Author: Tim Hsu
Publisher: American Mathematical Soc.
ISBN: 147045145X
Category : Education
Languages : en
Pages : 371

Get Book Here

Book Description
Fourier Series, Fourier Transforms, and Function Spaces is designed as a textbook for a second course or capstone course in analysis for advanced undergraduate or beginning graduate students. By assuming the existence and properties of the Lebesgue integral, this book makes it possible for students who have previously taken only one course in real analysis to learn Fourier analysis in terms of Hilbert spaces, allowing for both a deeper and more elegant approach. This approach also allows junior and senior undergraduates to study topics like PDEs, quantum mechanics, and signal processing in a rigorous manner. Students interested in statistics (time series), machine learning (kernel methods), mathematical physics (quantum mechanics), or electrical engineering (signal processing) will find this book useful. With 400 problems, many of which guide readers in developing key theoretical concepts themselves, this text can also be adapted to self-study or an inquiry-based approach. Finally, of course, this text can also serve as motivation and preparation for students going on to further study in analysis.

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32

Introduction to Fourier Analysis on Euclidean Spaces (PMS-32), Volume 32 PDF Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 140088389X
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
The authors present a unified treatment of basic topics that arise in Fourier analysis. Their intention is to illustrate the role played by the structure of Euclidean spaces, particularly the action of translations, dilatations, and rotations, and to motivate the study of harmonic analysis on more general spaces having an analogous structure, e.g., symmetric spaces.

From Vector Spaces to Function Spaces

From Vector Spaces to Function Spaces PDF Author: Yutaka Yamamoto
Publisher: SIAM
ISBN: 1611972302
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
A guide to analytic methods in applied mathematics from the perspective of functional analysis, suitable for scientists, engineers and students.

Modern Fourier Analysis

Modern Fourier Analysis PDF Author: Loukas Grafakos
Publisher: Springer
ISBN: 1493912305
Category : Mathematics
Languages : en
Pages : 636

Get Book Here

Book Description
This text is aimed at graduate students in mathematics and to interested researchers who wish to acquire an in depth understanding of Euclidean Harmonic analysis. The text covers modern topics and techniques in function spaces, atomic decompositions, singular integrals of nonconvolution type and the boundedness and convergence of Fourier series and integrals. The exposition and style are designed to stimulate further study and promote research. Historical information and references are included at the end of each chapter. This third edition includes a new chapter entitled "Multilinear Harmonic Analysis" which focuses on topics related to multilinear operators and their applications. Sections 1.1 and 1.2 are also new in this edition. Numerous corrections have been made to the text from the previous editions and several improvements have been incorporated, such as the adoption of clear and elegant statements. A few more exercises have been added with relevant hints when necessary.

Fourier Analysis

Fourier Analysis PDF Author: Elias M. Stein
Publisher: Princeton University Press
ISBN: 1400831237
Category : Mathematics
Languages : en
Pages : 326

Get Book Here

Book Description
This first volume, a three-part introduction to the subject, is intended for students with a beginning knowledge of mathematical analysis who are motivated to discover the ideas that shape Fourier analysis. It begins with the simple conviction that Fourier arrived at in the early nineteenth century when studying problems in the physical sciences--that an arbitrary function can be written as an infinite sum of the most basic trigonometric functions. The first part implements this idea in terms of notions of convergence and summability of Fourier series, while highlighting applications such as the isoperimetric inequality and equidistribution. The second part deals with the Fourier transform and its applications to classical partial differential equations and the Radon transform; a clear introduction to the subject serves to avoid technical difficulties. The book closes with Fourier theory for finite abelian groups, which is applied to prime numbers in arithmetic progression. In organizing their exposition, the authors have carefully balanced an emphasis on key conceptual insights against the need to provide the technical underpinnings of rigorous analysis. Students of mathematics, physics, engineering and other sciences will find the theory and applications covered in this volume to be of real interest. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Fourier Analysis is the first, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science PDF Author: Isaac Pesenson
Publisher: Birkhäuser
ISBN: 9783319856933
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.

An Introduction to Lebesgue Integration and Fourier Series

An Introduction to Lebesgue Integration and Fourier Series PDF Author: Howard J. Wilcox
Publisher: Courier Corporation
ISBN: 0486137473
Category : Mathematics
Languages : en
Pages : 194

Get Book Here

Book Description
This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.