Author: Rudolph W. Preisendorfer
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 48
Book Description
Time-dependent Wave Transport Theory
Author: Rudolph W. Preisendorfer
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 48
Book Description
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 48
Book Description
Time-Dependent Density-Functional Theory
Author: Carsten Ullrich
Publisher: Oxford University Press
ISBN: 0199563020
Category : Science
Languages : en
Pages : 541
Book Description
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Publisher: Oxford University Press
ISBN: 0199563020
Category : Science
Languages : en
Pages : 541
Book Description
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
Transport Theory
Author: James J. Duderstadt
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 630
Book Description
Problems after each chapter
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 630
Book Description
Problems after each chapter
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1216
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 1216
Book Description
Quantum Chemistry and Dynamics of Excited States
Author: Leticia González
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Publisher: John Wiley & Sons
ISBN: 1119417759
Category : Science
Languages : en
Pages : 52
Book Description
An introduction to the rapidly evolving methodology of electronic excited states For academic researchers, postdocs, graduate and undergraduate students, Quantum Chemistry and Dynamics of Excited States: Methods and Applications reports the most updated and accurate theoretical techniques to treat electronic excited states. From methods to deal with stationary calculations through time-dependent simulations of molecular systems, this book serves as a guide for beginners in the field and knowledge seekers alike. Taking into account the most recent theory developments and representative applications, it also covers the often-overlooked gap between theoretical and computational chemistry. An excellent reference for both researchers and students, Excited States provides essential knowledge on quantum chemistry, an in-depth overview of the latest developments, and theoretical techniques around the properties and nonadiabatic dynamics of chemical systems. Readers will learn: ● Essential theoretical techniques to describe the properties and dynamics of chemical systems ● Electronic Structure methods for stationary calculations ● Methods for electronic excited states from both a quantum chemical and time-dependent point of view ● A breakdown of the most recent developments in the past 30 years For those searching for a better understanding of excited states as they relate to chemistry, biochemistry, industrial chemistry, and beyond, Quantum Chemistry and Dynamics of Excited States provides a solid education in the necessary foundations and important theories of excited states in photochemistry and ultrafast phenomena.
Random Media
Author: George Papanicolaou
Publisher: Springer Science & Business Media
ISBN: 1461387256
Category : Mathematics
Languages : en
Pages : 322
Book Description
This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.
Publisher: Springer Science & Business Media
ISBN: 1461387256
Category : Mathematics
Languages : en
Pages : 322
Book Description
This IMA Volume in Mathematics and its Applications RANDOM MEDIA represents the proceedings of a workshop which was an integral part of the 1984-85 IMA program on STOCHASTIC DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS We are grateful to the Scientific Committee: Daniel Stroock (Chairman) \~ende 11 Fl emi ng Theodore Harris Pierre-Louis Lions Steven Orey George Papanicolaou for planning and implementing an exciting and stimulating year-long program. We especi ally thank George Papani col aOIJ for organi zi ng a workshop which produced fruitful interactions between mathematicians and scientists from both academia and industry. George R. Sell Hans I~ei nherger PREFACE During September 1985 a workshop on random media was held at the Institute for Mathematics and its Applications at the University of Minnesota. This was part of the program for the year on Probability and Stochastic Processes at IMA. The main objective of the workshop was to bring together researchers who work in a broad area including applications and mathematical methodology. The papers in this volume give an idea of what went on and they also represent a cross section of problems and methods that are currently of interest.
An Introduction to Quantum Theory
Author: J Greensite
Publisher: Myprint
ISBN: 9780750318396
Category :
Languages : en
Pages : 532
Book Description
Publisher: Myprint
ISBN: 9780750318396
Category :
Languages : en
Pages : 532
Book Description
The Non-Equilibrium Green's Function Method for Nanoscale Device Simulation
Author: Mahdi Pourfath
Publisher: Springer
ISBN: 370911800X
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.
Publisher: Springer
ISBN: 370911800X
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
For modeling the transport of carriers in nanoscale devices, a Green-function formalism is the most accurate approach. Due to the complexity of the formalism, one should have a deep understanding of the underlying principles and use smart approximations and numerical methods for solving the kinetic equations at a reasonable computational time. In this book the required concepts from quantum and statistical mechanics and numerical methods for calculating Green functions are presented. The Green function is studied in detail for systems both under equilibrium and under nonequilibrium conditions. Because the formalism enables rigorous modeling of different scattering mechanisms in terms of self-energies, but an exact evaluation of self-energies for realistic systems is not possible, their approximation and inclusion in the quantum kinetic equations of the Green functions are elaborated. All the elements of the kinetic equations, which are the device Hamiltonian, contact self-energies and scattering self-energies, are examined and efficient methods for their evaluation are explained. Finally, the application of these methods to study novel electronic devices such as nanotubes, graphene, Si-nanowires and low-dimensional thermoelectric devices and photodetectors are discussed.
Molecular Electronic-Structure Theory
Author: Trygve Helgaker
Publisher: John Wiley & Sons
ISBN: 1119019559
Category : Science
Languages : en
Pages : 949
Book Description
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.
Publisher: John Wiley & Sons
ISBN: 1119019559
Category : Science
Languages : en
Pages : 949
Book Description
Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556
Book Description