Theory of Finite and Infinite Graphs

Theory of Finite and Infinite Graphs PDF Author: Denes König
Publisher: Springer Science & Business Media
ISBN: 1468489712
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Konigsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " 10]. There were earlier books that took note of graph theory. Veb len's Analysis Situs, published in 1931, is about general combinato rial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes," are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathe matical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amuse ment, how one mathematician scorned it as "The slums of Topol ogy.""

Theory of Finite and Infinite Graphs

Theory of Finite and Infinite Graphs PDF Author: Denes König
Publisher: Springer Science & Business Media
ISBN: 1468489712
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler's solution of the Konigsberg Bridges Problem, dated 1736, and the other is the appearance of Denes Konig's textbook in 1936. "From Konigsberg to Konig's book" sings the poetess, "So runs the graphic tale . . . " 10]. There were earlier books that took note of graph theory. Veb len's Analysis Situs, published in 1931, is about general combinato rial topology. But its first two chapters, on "Linear graphs" and "Two-Dimensional Complexes," are almost exclusively concerned with the territory still explored by graph theorists. Rouse Ball's Mathematical Recreations and Essays told, usually without proofs, of the major graph-theoretical advances ofthe nineteenth century, of the Five Colour Theorem, of Petersen's Theorem on I-factors, and of Cayley's enumerations of trees. It was Rouse Ball's book that kindled my own graph-theoretical enthusiasm. The graph-theoretical papers of Hassler Whitney, published in 1931-1933, would have made an excellent textbook in English had they been collected and published as such. But the honour of presenting Graph Theory to the mathe matical world as a subject in its own right, with its own textbook, belongs to Denes Konig. Low was the prestige of Graph Theory in the Dirty Thirties. It is still remembered, with resentment now shading into amuse ment, how one mathematician scorned it as "The slums of Topol ogy.""

Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups PDF Author: Wolfgang Woess
Publisher: Cambridge University Press
ISBN: 0521552923
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Profinite Graphs and Groups

Profinite Graphs and Groups PDF Author: Luis Ribes
Publisher: Springer
ISBN: 3319611992
Category : Mathematics
Languages : en
Pages : 473

Get Book Here

Book Description
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open questions and suggestions for further reading.

Graph Theory with Applications to Engineering and Computer Science

Graph Theory with Applications to Engineering and Computer Science PDF Author: Narsingh Deo
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120301450
Category : Graph theory
Languages : en
Pages : 478

Get Book Here

Book Description
Because of its inherent simplicity, graph theory has a wide range of applications in engineering, and in physical sciences. It has of course uses in social sciences, in linguistics and in numerous other areas. In fact, a graph can be used to represent almost any physical situation involving discrete objects and the relationship among them. Now with the solutions to engineering and other problems becoming so complex leading to larger graphs, it is virtually difficult to analyze without the use of computers. This book is recommended in IIT Kharagpur, West Bengal for B.Tech Computer Science, NIT Arunachal Pradesh, NIT Nagaland, NIT Agartala, NIT Silchar, Gauhati University, Dibrugarh University, North Eastern Regional Institute of Management, Assam Engineering College, West Bengal Univerity of Technology (WBUT) for B.Tech, M.Tech Computer Science, University of Burdwan, West Bengal for B.Tech. Computer Science, Jadavpur University, West Bengal for M.Sc. Computer Science, Kalyani College of Engineering, West Bengal for B.Tech. Computer Science. Key Features: This book provides a rigorous yet informal treatment of graph theory with an emphasis on computational aspects of graph theory and graph-theoretic algorithms. Numerous applications to actual engineering problems are incorpo-rated with software design and optimization topics.

Random Walks and Electric Networks

Random Walks and Electric Networks PDF Author: Peter G. Doyle
Publisher: American Mathematical Soc.
ISBN: 1614440220
Category : Electric network topology
Languages : en
Pages : 174

Get Book Here

Book Description
Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.

Combinatorics and Graph Theory

Combinatorics and Graph Theory PDF Author: John Harris
Publisher: Springer Science & Business Media
ISBN: 0387797114
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
These notes were first used in an introductory course team taught by the authors at Appalachian State University to advanced undergraduates and beginning graduates. The text was written with four pedagogical goals in mind: offer a variety of topics in one course, get to the main themes and tools as efficiently as possible, show the relationships between the different topics, and include recent results to convince students that mathematics is a living discipline.

Directions in Infinite Graph Theory and Combinatorics

Directions in Infinite Graph Theory and Combinatorics PDF Author: R. Diestel
Publisher: Elsevier
ISBN: 148329479X
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
This book has arisen from a colloquium held at St. John's College, Cambridge, in July 1989, which brought together most of today's leading experts in the field of infinite graph theory and combinatorics. This was the first such meeting ever held, and its aim was to assess the state of the art in the discipline, to consider its links with other parts of mathematics, and to discuss possible directions for future development. This volume reflects the Cambridge meeting in both level and scope. It contains research papers as well as expository surveys of particular areas. Together they offer a comprehensive portrait of infinite graph theory and combinatorics, which should be particularly attractive to anyone new to the discipline.

The Mathematical Coloring Book

The Mathematical Coloring Book PDF Author: Alexander Soifer
Publisher: Springer Science & Business Media
ISBN: 0387746420
Category : Mathematics
Languages : en
Pages : 619

Get Book Here

Book Description
This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.

Connectivity in Graphs

Connectivity in Graphs PDF Author: W. T. Tutte
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description


Fractional Graph Theory

Fractional Graph Theory PDF Author: Edward R. Scheinerman
Publisher: Courier Corporation
ISBN: 0486292134
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
This volume explains the general theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics: fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, fractional isomorphism, and more. 1997 edition.