Author: K. J. Horadam
Publisher: Princeton University Press
ISBN: 1400842905
Category : Mathematics
Languages : en
Pages : 280
Book Description
In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.
Hadamard Matrices and Their Applications
Author: K. J. Horadam
Publisher: Princeton University Press
ISBN: 1400842905
Category : Mathematics
Languages : en
Pages : 280
Book Description
In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.
Publisher: Princeton University Press
ISBN: 1400842905
Category : Mathematics
Languages : en
Pages : 280
Book Description
In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.
Hadamard Matrices and Their Applications
Author: S.S. Agaian
Publisher: Springer
ISBN: 354039740X
Category : Mathematics
Languages : en
Pages : 231
Book Description
Publisher: Springer
ISBN: 354039740X
Category : Mathematics
Languages : en
Pages : 231
Book Description
Computational Algebra and Number Theory
Author: Wieb Bosma
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326
Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
Publisher: Springer Science & Business Media
ISBN: 9401711089
Category : Mathematics
Languages : en
Pages : 326
Book Description
Computers have stretched the limits of what is possible in mathematics. More: they have given rise to new fields of mathematical study; the analysis of new and traditional algorithms, the creation of new paradigms for implementing computational methods, the viewing of old techniques from a concrete algorithmic vantage point, to name but a few. Computational Algebra and Number Theory lies at the lively intersection of computer science and mathematics. It highlights the surprising width and depth of the field through examples drawn from current activity, ranging from category theory, graph theory and combinatorics, to more classical computational areas, such as group theory and number theory. Many of the papers in the book provide a survey of their topic, as well as a description of present research. Throughout the variety of mathematical and computational fields represented, the emphasis is placed on the common principles and the methods employed. Audience: Students, experts, and those performing current research in any of the topics mentioned above.
The Mathematica GuideBook for Symbolics
Author: Michael Trott
Publisher: Springer Science & Business Media
ISBN: 0387288155
Category : Computers
Languages : en
Pages : 1490
Book Description
Provides reader with working knowledge of Mathematica and key aspects of Mathematica symbolic capabilities, the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www/MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
Publisher: Springer Science & Business Media
ISBN: 0387288155
Category : Computers
Languages : en
Pages : 1490
Book Description
Provides reader with working knowledge of Mathematica and key aspects of Mathematica symbolic capabilities, the real heart of Mathematica and the ingredient of the Mathematica software system that makes it so unique and powerful Clear organization, complete topic coverage, and an accessible writing style for both novices and experts Website for book with additional materials: http://www/MathematicaGuideBooks.org Accompanying DVD containing all materials as an electronic book with complete, executable Mathematica 5.1 compatible code and programs, rendered color graphics, and animations
Matrix Analysis for Statistics
Author: James R. Schott
Publisher: John Wiley & Sons
ISBN: 1119092485
Category : Mathematics
Languages : en
Pages : 547
Book Description
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Publisher: John Wiley & Sons
ISBN: 1119092485
Category : Mathematics
Languages : en
Pages : 547
Book Description
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Theory and Applications of Models of Computation
Author: Jin-Yi Cai
Publisher: Springer Science & Business Media
ISBN: 3540340211
Category : Computers
Languages : en
Pages : 809
Book Description
TAMC 2006 was the third conference in the series. The previous two meetings were held May 17–19, 2004 in Beijing, and May 17–20, 2005 in Kunming
Publisher: Springer Science & Business Media
ISBN: 3540340211
Category : Computers
Languages : en
Pages : 809
Book Description
TAMC 2006 was the third conference in the series. The previous two meetings were held May 17–19, 2004 in Beijing, and May 17–20, 2005 in Kunming
Hadamard Matrices and Their Applications
Author: K. J. Horadam
Publisher: Princeton University Press
ISBN: 069111921X
Category : Mathematics
Languages : en
Pages : 277
Book Description
In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.
Publisher: Princeton University Press
ISBN: 069111921X
Category : Mathematics
Languages : en
Pages : 277
Book Description
In Hadamard Matrices and Their Applications, K. J. Horadam provides the first unified account of cocyclic Hadamard matrices and their applications in signal and data processing. This original work is based on the development of an algebraic link between Hadamard matrices and the cohomology of finite groups that was discovered fifteen years ago. The book translates physical applications into terms a pure mathematician will appreciate, and theoretical structures into ones an applied mathematician, computer scientist, or communications engineer can adapt and use. The first half of the book explains the state of our knowledge of Hadamard matrices and two important generalizations: matrices with group entries and multidimensional Hadamard arrays. It focuses on their applications in engineering and computer science, as signal transforms, spreading sequences, error-correcting codes, and cryptographic primitives. The book's second half presents the new results in cocyclic Hadamard matrices and their applications. Full expression of this theory has been realized only recently, in the Five-fold Constellation. This identifies cocyclic generalized Hadamard matrices with particular "stars" in four other areas of mathematics and engineering: group cohomology, incidence structures, combinatorics, and signal correlation. Pointing the way to possible new developments in a field ripe for further research, this book formulates and discusses ninety open questions.
Advanced Intelligent Computing Theories and Applications
Author: De-Shuang Huang
Publisher: Springer
ISBN: 3540742824
Category : Computers
Languages : en
Pages : 1400
Book Description
This volume, in conjunction with the two volumes LNCS 4681 and LNAI 4682, constitutes the refereed proceedings of the Third International Conference on Intelligent Computing held in Qingdao, China, in August 2007. The conference sought to establish contemporary intelligent computing techniques as an integral method that underscores trends in advanced computational intelligence and links theoretical research with applications.
Publisher: Springer
ISBN: 3540742824
Category : Computers
Languages : en
Pages : 1400
Book Description
This volume, in conjunction with the two volumes LNCS 4681 and LNAI 4682, constitutes the refereed proceedings of the Third International Conference on Intelligent Computing held in Qingdao, China, in August 2007. The conference sought to establish contemporary intelligent computing techniques as an integral method that underscores trends in advanced computational intelligence and links theoretical research with applications.
Hadamard Transforms
Author: S. S. Agaian
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819486479
Category : Hadamard matrices
Languages : en
Pages : 0
Book Description
The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced topics, and then discusses cutting-edge implementation techniques. The book covers a wide range of problems related to these matrices/transforms, formulates open questions, and points the way to potential advancements. Hadamard Transforms is suitable for a wide variety of audiences, including graduate students in electrical and computer engineering, mathematics, or computer science. Readers are not presumed to have a sophisticated mathematical background, but some mathematical background is helpful. This book will prepare readers for further exploration and will support aspiring researchers in the field.
Publisher: SPIE-International Society for Optical Engineering
ISBN: 9780819486479
Category : Hadamard matrices
Languages : en
Pages : 0
Book Description
The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced topics, and then discusses cutting-edge implementation techniques. The book covers a wide range of problems related to these matrices/transforms, formulates open questions, and points the way to potential advancements. Hadamard Transforms is suitable for a wide variety of audiences, including graduate students in electrical and computer engineering, mathematics, or computer science. Readers are not presumed to have a sophisticated mathematical background, but some mathematical background is helpful. This book will prepare readers for further exploration and will support aspiring researchers in the field.
Hadamard Matrices
Author: Jennifer Seberry
Publisher: John Wiley & Sons
ISBN: 111952024X
Category : Mathematics
Languages : en
Pages : 352
Book Description
Up-to-date resource on Hadamard matrices Hadamard Matrices: Constructions using Number Theory and Algebra provides students with a discussion of the basic definitions used for Hadamard Matrices as well as more advanced topics in the subject, including: Gauss sums, Jacobi sums and relative Gauss sums Cyclotomic numbers Plug-in matrices, arrays, sequences and M-structure Galois rings and Menon Hadamard differences sets Paley difference sets and Paley type partial difference sets Symmetric Hadamard matrices, skew Hadamard matrices and amicable Hadamard matrices A discussion of asymptotic existence of Hadamard matrices Maximal determinant matrices, embeddability of Hadamard matrices and growth problem for Hadamard matrices The book can be used as a textbook for graduate courses in combinatorics, or as a reference for researchers studying Hadamard matrices. Utilized in the fields of signal processing and design experiments, Hadamard matrices have been used for 150 years, and remain practical today. Hadamard Matrices combines a thorough discussion of the basic concepts underlying the subject matter with more advanced applications that will be of interest to experts in the area.
Publisher: John Wiley & Sons
ISBN: 111952024X
Category : Mathematics
Languages : en
Pages : 352
Book Description
Up-to-date resource on Hadamard matrices Hadamard Matrices: Constructions using Number Theory and Algebra provides students with a discussion of the basic definitions used for Hadamard Matrices as well as more advanced topics in the subject, including: Gauss sums, Jacobi sums and relative Gauss sums Cyclotomic numbers Plug-in matrices, arrays, sequences and M-structure Galois rings and Menon Hadamard differences sets Paley difference sets and Paley type partial difference sets Symmetric Hadamard matrices, skew Hadamard matrices and amicable Hadamard matrices A discussion of asymptotic existence of Hadamard matrices Maximal determinant matrices, embeddability of Hadamard matrices and growth problem for Hadamard matrices The book can be used as a textbook for graduate courses in combinatorics, or as a reference for researchers studying Hadamard matrices. Utilized in the fields of signal processing and design experiments, Hadamard matrices have been used for 150 years, and remain practical today. Hadamard Matrices combines a thorough discussion of the basic concepts underlying the subject matter with more advanced applications that will be of interest to experts in the area.