Theoretical Vibrational Spectroscopy of Proteins

Theoretical Vibrational Spectroscopy of Proteins PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Theoretical Vibrational Spectroscopy of Proteins Lu Wang Under the supervision of Professor James L. Skinner At the University of Wisconsin-Madison Vibrational spectroscopy, such as linear and two-dimensional infrared (IR) spectroscopy, is widely utilized to study the structure and dynamics of peptides and proteins. Interpretation of the experiment, or a direct assignment of the complex experimental spectra to the underlying protein structure, can be difficult. Molecular dynamics (MD) simulations offer a complementary approach to provide high-resolution structural and temporal information of proteins, although they are limited by factors such as force field accuracy and are not directly comparable to spectroscopic experiments. We have developed vibrational frequency maps for proteins that generate instantaneous site frequencies directly from MD simulations. We combine the frequency maps with established nearest-neighbor frequency shift and coupling schemes and a mixed quantum/classical framework to form a theoretical strategy for calculating protein linear and 2D IR spectra in the amide I region. This theoretical method provides a means to bridge spectroscopic experiments and molecular simulations, which allows a critical assessment of MD simulations by comparison to experiment, and enables the interpretation of experimental spectra at the molecular level. In this dissertation, we present the development of the vibrational frequency maps and provide the theoretical protocol that allows the calculation of protein vibrational spectra directly from MD simulations. We validate the theoretical method by applying it to peptides with various secondary structures in aqueous solution, and apply it to a few biologically relevant problems. For instance, we have studied the thermal unfolding transition of the villin headpiece subdomain (HP36) using IR spectra calculations. We follow the unfolding process of HP36 by monitoring its spectral changes as a function of temperature. With the help of isotope labeling, we are able to capture the feature that helix 2 of HP36 loses its secondary structure before global unfolding occurs, in agreement with experiment. In collaboration with the Zanni group and the de Pablo group at University of Wisconsin, we have also carried out studies on IAPP, a peptide closely related to type 2 diabetes. By combining theoretical modeling with extensive computer simulations and spectroscopic experiments, we have investigated the structure and dynamics of IAPP in aqueous solution, in the fibril form and in the vicinity of lipid membranes.

Theoretical Vibrational Spectroscopy of Proteins

Theoretical Vibrational Spectroscopy of Proteins PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Theoretical Vibrational Spectroscopy of Proteins Lu Wang Under the supervision of Professor James L. Skinner At the University of Wisconsin-Madison Vibrational spectroscopy, such as linear and two-dimensional infrared (IR) spectroscopy, is widely utilized to study the structure and dynamics of peptides and proteins. Interpretation of the experiment, or a direct assignment of the complex experimental spectra to the underlying protein structure, can be difficult. Molecular dynamics (MD) simulations offer a complementary approach to provide high-resolution structural and temporal information of proteins, although they are limited by factors such as force field accuracy and are not directly comparable to spectroscopic experiments. We have developed vibrational frequency maps for proteins that generate instantaneous site frequencies directly from MD simulations. We combine the frequency maps with established nearest-neighbor frequency shift and coupling schemes and a mixed quantum/classical framework to form a theoretical strategy for calculating protein linear and 2D IR spectra in the amide I region. This theoretical method provides a means to bridge spectroscopic experiments and molecular simulations, which allows a critical assessment of MD simulations by comparison to experiment, and enables the interpretation of experimental spectra at the molecular level. In this dissertation, we present the development of the vibrational frequency maps and provide the theoretical protocol that allows the calculation of protein vibrational spectra directly from MD simulations. We validate the theoretical method by applying it to peptides with various secondary structures in aqueous solution, and apply it to a few biologically relevant problems. For instance, we have studied the thermal unfolding transition of the villin headpiece subdomain (HP36) using IR spectra calculations. We follow the unfolding process of HP36 by monitoring its spectral changes as a function of temperature. With the help of isotope labeling, we are able to capture the feature that helix 2 of HP36 loses its secondary structure before global unfolding occurs, in agreement with experiment. In collaboration with the Zanni group and the de Pablo group at University of Wisconsin, we have also carried out studies on IAPP, a peptide closely related to type 2 diabetes. By combining theoretical modeling with extensive computer simulations and spectroscopic experiments, we have investigated the structure and dynamics of IAPP in aqueous solution, in the fibril form and in the vicinity of lipid membranes.

Methods in Protein Structure and Stability Analysis: Vibrational spectroscopy

Methods in Protein Structure and Stability Analysis: Vibrational spectroscopy PDF Author: Vladimir N. Uversky
Publisher: Nova Publishers
ISBN: 9781600217036
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
Protein research is a frontier field in science. Proteins are widely distributed in plants and animals and are the principal constituents of the protoplasm of all cells, and consist essentially of combinations of a-amino acids in peptide linkages. Twenty different amino acids are commonly found in proteins, and serve as enzymes, structural elements, hormones, immunoglobulins, etc., and are involved throughout the body, and in photosynthesis. This book gathers new leading-edge research from throughout the world in this exciting and exploding field of research.

Vibrational Spectroscopy in Life Science

Vibrational Spectroscopy in Life Science PDF Author: Friedrich Siebert
Publisher: John Wiley & Sons
ISBN: 3527621350
Category : Science
Languages : en
Pages : 320

Get Book Here

Book Description
The authors describe basic theoretical concepts of vibrational spectroscopy, address instrumental aspects and experimental procedures, and discuss experimental and theoretical methods for interpreting vibrational spectra. It is shown how vibrational spectroscopy provides information on general aspects of proteins, such as structure, dynamics, and protein folding. In addition, the authors use selected examples to demonstrate the application of Raman and IR spectroscopy to specific biological systems, such as metalloproteins, and photoreceptors. Throughout, references to extensive mathematical and physical aspects, involved biochemical features, and aspects of molecular biology are set in boxes for easier reading. Ideal for undergraduate as well as graduate students of biology, biochemistry, chemistry, and physics looking for a compact introduction to this field.

Vibrational Spectroscopy in Protein Research

Vibrational Spectroscopy in Protein Research PDF Author: Yukihiro Ozaki
Publisher: Academic Press
ISBN: 9780128186107
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies.

Revealing the Structure and Dynamics of Small-molecule Solutions and Proteins Using Theoretical Vibrational Spectroscopy

Revealing the Structure and Dynamics of Small-molecule Solutions and Proteins Using Theoretical Vibrational Spectroscopy PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Due to the sensitivity of vibrational chromophores to their local environments, linear and ultrafast vibrational spectroscopy have proven to be very useful techniques for studying the structure and dynamics of condensed phases. Because spectroscopic techniques encode information related to the time-dependent configuration of an entire system into spectra resolved over at most a few dimensions, however, it is very difficult to interpret vibrational line shapes in a detailed and unambiguous manner. One approach to surmounting this difficulty is to calculate vibrational line shapes from molecular dynamics (MD) simulations by employing vibrational response theory and spectroscopic maps. (The maps relate observables in classical MD simulations to quantum spectroscopic quantities.) Once validated by comparison of experimental and theoretical line shapes, MD simulations can be used as an unequivocal basis for the interpretation of vibrational spectra. Here, we employ this approach in order to gain insight into small-molecule solutions and proteins. After sketching the theoretical formalism underlying the calculations of vibrational spectra (Chapter 2), vibrational spectroscopic analysis of the urea/water (Chapter 3) and cyanide/water (Chapter 4) solutions is presented. Analysis of linear infrared (IR) line shapes provides information concerning the local solvation structure of these molecules, while analysis of two-dimensional IR and anisotropy decay yields insight into frequency and rotational dynamics. The remainder of this work concerns the vibrational spectroscopy of the amide I (mostly CO-stretch) band of proteins. After presenting additional theoretical formalism and maps for protein spectroscopy (Chapter 5), the maps are evaluated by examining IR spectra for a single conformation of an alpha-helical model peptide in the gas phase (Chapter 6). These methods are then applied to evaluate the 2D IR spectra of two important biological systems: polyglutamine (Chapter 7) and the potassium ion channel KcsA (Chapter 8). Notably, these studies employ isotope-labeling techniques to isolate the vibrational response of a subset of amide I modes in a non-perturbative fashion. Finally, extensions to the theory are presented to enable the computation of amide I vibrational sum-frequency generation spectra (Chapter 9), which are expected to be sensitive to the structures of interfacial proteins.

Proteins

Proteins PDF Author: Charles L. Brooks
Publisher: John Wiley & Sons
ISBN: 0470141816
Category : Science
Languages : en
Pages : 278

Get Book Here

Book Description
Presenting a wide-ranging view of current developments in protein research, the papers in this collection, each written by highly regarded experts in the field, examine various aspects of protein structure, functions, dynamics, and experimentation. Topics include dynamical simulation methods, the biological role of atom fluctuations, protein folding, influences on protein dynamics, and a variety of analytical techniques, such as X-ray diffraction, vibrational spectroscopy, photodissociation and rebinding kinetics. This is part of a series devoted to providing general information on a wide variety of topics in chemical physics in order to stimulate new research and to serve as a text for beginners in a particular area of chemical physics.

Vibrational Spectroscopy in Protein Research

Vibrational Spectroscopy in Protein Research PDF Author: Yukihiro Ozaki
Publisher: Academic Press
ISBN: 0128186119
Category : Science
Languages : en
Pages : 609

Get Book Here

Book Description
Vibrational Spectroscopy in Protein Research offers a thorough discussion of vibrational spectroscopy in protein research, providing researchers with clear, practical guidance on methods employed, areas of application, and modes of analysis. With chapter contributions from international leaders in the field, the book addresses basic principles of vibrational spectroscopy in protein research, instrumentation and technologies available, sampling methods, quantitative analysis, origin of group frequencies, and qualitative interpretation. In addition to discussing vibrational spectroscopy for the analysis of purified proteins, chapter authors also examine its use in studying complex protein systems, including protein aggregates, fibrous proteins, membrane proteins and protein assemblies. Emphasis throughout the book is placed on applications in human tissue, cell development, and disease analysis, with chapters dedicated to studies of molecular changes that occur during disease progression, as well as identifying changes in tissues and cells in disease studies. Provides thorough guidance in implementing cutting-edge vibrational spectroscopic methods from international leaders in the field Emphasizes in vivo, in situ and non-invasive analysis of proteins in biomedical and life science research more broadly Contains chapters that address vibrational spectroscopy for the study of simple purified proteins and protein aggregates, fibrous proteins, membrane proteins and protein assemblies

Biomolecular Spectroscopy: Advances from Integrating Experiments and Theory

Biomolecular Spectroscopy: Advances from Integrating Experiments and Theory PDF Author:
Publisher: Elsevier
ISBN: 0124165974
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
Published continuously since 1944, Advances in Protein Chemistry and Structural Biology has been a continuous, essential resource for protein chemists. Covering reviews of methodology and research in all aspects of protein chemistry, including purification/expression, proteomics, modeling and structural determination and design, each volume brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics. Covers reviews of methodology and research in all aspects of protein chemistry Brings forth new information about protocols and analysis of proteins while presenting the most recent findings from leading experts in a broad range of protein-related topics

Modern Vibrational Spectroscopy and Micro-Spectroscopy

Modern Vibrational Spectroscopy and Micro-Spectroscopy PDF Author: Max Diem
Publisher: John Wiley & Sons
ISBN: 1118824954
Category : Science
Languages : en
Pages : 432

Get Book Here

Book Description
Modern Vibrational Spectroscopy and Micro-Spectroscopy: Theory, Instrumentation and Biomedical Applications unites the theory and background of conventional vibrational spectroscopy with the principles of microspectroscopy. It starts with basic theory as it applies to small molecules and then expands it to include the large biomolecules which are the main topic of the book with an emphasis on practical experiments, results analysis and medical and diagnostic applications. This book is unique in that it addresses both the parent spectroscopy and the microspectroscopic aspects in one volume. Part I covers the basic theory, principles and instrumentation of classical vibrational, infrared and Raman spectroscopy. It is aimed at researchers with a background in chemistry and physics, and is presented at the level suitable for first year graduate students. The latter half of Part I is devoted to more novel subjects in vibrational spectroscopy, such as resonance and non-linear Raman effects, vibrational optical activity, time resolved spectroscopy and computational methods. Thus, Part 1 represents a short course into modern vibrational spectroscopy. Part II is devoted in its entirety to applications of vibrational spectroscopic techniques to biophysical and bio-structural research, and the more recent extension of vibrational spectroscopy to microscopic data acquisition. Vibrational microscopy (or microspectroscopy) has opened entirely new avenues toward applications in the biomedical sciences, and has created new research fields collectively referred to as Spectral Cytopathology (SCP) and Spectral Histopathology (SHP). In order to fully exploit the information contained in the micro-spectral datasets, methods of multivariate analysis need to be employed. These methods, along with representative results of both SCP and SHP are presented and discussed in detail in Part II.

Introduction to Modern Vibrational Spectroscopy

Introduction to Modern Vibrational Spectroscopy PDF Author: Max Diem
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Practical and up-to-date, it incorporates some theoretical background material necessary to understand vibrational spectroscopy principles in addition to computational methods, instrumental aspects, novel developments and a number of detailed examples for vibrational spectra interpretations. Features a chapter on biological applications of vibrational spectroscopy and one devoted to a new branch of vibrational spectroscopy carried out with circularly polarized light.