Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures

Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures PDF Author: J.K. Skwirzynski
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 936

Get Book Here

Book Description
This volume contains almost complete proceedings of the NATO Advanced Study Institute (ASI) organised in 1979 to bring together principal innovators and numerous users of mathematical techniques for analysing the interaction of electromagnetic waves with engineering and biological structures. The mathematical disciplines which can be brought to bear on these problems necessitate examination of effectiveness, convergence and robustness of the derived analytic and num~rical algorithms. The aim of this ASI was to give a clear and up-to-date tutorial presentation of available techniques, and to bring together interested scientists, engineers and mathematiciaris, to discuss together their experience and to ensure wider familiarity with the subject. Our programme consists of three distinct yet related parts. The first two of these reflect two somewhat different methods applicable for different ranges of L/A, where L represents a characteristic dimension of a structure and A is a representative wavelength-of radiation. The third part deals with the specific problem of biological interaction. In the first part (Low and Intermediate Frequency Applications) we offer tutorial texts and user-oriented discussions on main techniques and problems concerning: radiation, scattering, aperture penetration, inverse scattering, using moment methods and their developments. The approach to the high frequency applications forms the subject of the second part of this volume, concentrating mainly on the geometrical theory of diffraction (GTD). There are three main variants of the GTD: uniform theory of diffraction (UTD), uniform asymptotic theory (liAT) , spectral theory of diffraction (STD).

Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures

Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures PDF Author: Skwirzynski JK ed
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures

Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures PDF Author: J.K. Skwirzynski
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 936

Get Book Here

Book Description
This volume contains almost complete proceedings of the NATO Advanced Study Institute (ASI) organised in 1979 to bring together principal innovators and numerous users of mathematical techniques for analysing the interaction of electromagnetic waves with engineering and biological structures. The mathematical disciplines which can be brought to bear on these problems necessitate examination of effectiveness, convergence and robustness of the derived analytic and num~rical algorithms. The aim of this ASI was to give a clear and up-to-date tutorial presentation of available techniques, and to bring together interested scientists, engineers and mathematiciaris, to discuss together their experience and to ensure wider familiarity with the subject. Our programme consists of three distinct yet related parts. The first two of these reflect two somewhat different methods applicable for different ranges of L/A, where L represents a characteristic dimension of a structure and A is a representative wavelength-of radiation. The third part deals with the specific problem of biological interaction. In the first part (Low and Intermediate Frequency Applications) we offer tutorial texts and user-oriented discussions on main techniques and problems concerning: radiation, scattering, aperture penetration, inverse scattering, using moment methods and their developments. The approach to the high frequency applications forms the subject of the second part of this volume, concentrating mainly on the geometrical theory of diffraction (GTD). There are three main variants of the GTD: uniform theory of diffraction (UTD), uniform asymptotic theory (liAT) , spectral theory of diffraction (STD).

Theoretical methods for determining the interaction of electromagnetic waves with structures : [proceedings of the NATO Advanced Study Inst. on theoretical methods fordetermining the interaction of electromagnetic waves with structures ; Norwich, july 23 - august 4, 1979]

Theoretical methods for determining the interaction of electromagnetic waves with structures : [proceedings of the NATO Advanced Study Inst. on theoretical methods fordetermining the interaction of electromagnetic waves with structures ; Norwich, july 23 - august 4, 1979] PDF Author: J. K. Skwirzynski
Publisher:
ISBN:
Category : Electromagnetic waves
Languages : en
Pages : 913

Get Book Here

Book Description


Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures

Theoretical Methods for Determining the Interaction of Electromagnetic Waves with Structures PDF Author: Joseph K. Skwirzynski
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


N.A.T.O. Advanced Study Institute on Theoretical Methods

N.A.T.O. Advanced Study Institute on Theoretical Methods PDF Author: J. K. Skwirzynski
Publisher:
ISBN:
Category : Electromagnetic theory
Languages : en
Pages :

Get Book Here

Book Description


Methods of Wave Theory in Dispersive Media

Methods of Wave Theory in Dispersive Media PDF Author: Mikhail Viktorovich Kuzelev
Publisher: World Scientific
ISBN: 981426170X
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
Ch. 1. Linear harmonic waves in dispersive systems. Initial-value problem and problem with an external source. 1. Harmonic waves in dispersive systems. 2. Initial-value problem. Eigenmode method. 3. Characteristic function of the state vector. Dispersion operator. 4. Laplace transform method -- ch. 2. A case study of linear waves in dispersive media. 5. Transverse electromagnetic waves in an isotropic dielectric. 6. Longitudinal electrostatic waves in a cold isotropic plasma. Collisional dissipation of plasma waves. 7. Transverse electromagnetic waves in a cold isotropic plasma. Dissipation of transverse waves in a plasma. 8. Electromagnetic waves in metals. 9. Electromagnetic waves in a waveguide with an isotropic dielectric. 10. Longitudinal waves in a hot isotropic plasma. Electron diffusion in a plasma. 11. Longitudinal waves in an isotropic degenerate plasma. Waves in a quantum plasma. 12. Ion acoustic waves in a nonisothermal plasma. Ambipolar diffusion. 13. Electromagnetic waves in a waveguide with an anisotropic plasma in a strong external magnetic field. 14. Electromagnetic waves propagating in a magnetized electron plasma along a magnetic field. 15. Electrostatic waves propagating in a magnetized electron plasma at an angle to a magnetic field. 16. Magnetohydrodynamic waves in a conducting fluid. 17. Acoustic waves in crystals. 18. Longitudinal electrostatic waves in a one-dimensional electron beam. 19. Beam instability in a plasma. 20. Instability of a current-carrying plasma -- ch. 3. Linear waves in coupled media. Slow amplitude method. 21. Coupled oscillator representation and slow amplitude method. 22. Beam-plasma system in the coupled oscillator representation. 23. Basic equations of microwave electronics. 24. Resonant Buneman instability in a current-carrying plasma in the coupled oscillator representation. 25. Dispersion function and wave absorption in dissipative systems. 26. Some effects in the interaction between waves in coupled systems. 27. Waves and their interaction in periodic structures -- ch. 4. Nonharmonic waves in dispersive media. 28. General solution to the initial-value problem. 29. Quasi-harmonic approximation. Group velocity. 30. Pulse spreading in equilibrium dispersive media. 31. Stationary-phase method. 32. Some problems for wave equations with a source -- ch. 5. Nonharmonic waves in nonequilibrium media. 33. Pulse propagation in nonequilibrium media. 34. Stationary-phase method for complex frequencies. 35. Quasi-harmonic approximation in the theory of interaction of electron beams with slowing-down media -- ch. 6. Theory of instabilities. 36. Convective and absolute instabilities. First criterion for the type of instability. 37. Saddle-point method. Second criterion for the type of instability. 38. Third Criterion for the type of instability. 39. Type of beam instability in the interaction with a slowed wave of zero group velocity in a medium. 40. Calculation of the Green's functions of unstable systems -- ch. 7. Hamiltonian method in the theory of electromagnetic radiation in dispersive media. 41. Equations for the excitation of transverse electromagnetic field oscillators. 42. Dipole radiation. 43. Radiation from a moving dipole - undulator radiation. 44. Cyclotron radiation. 45. Cherenkov effect. Anomalous and normal doppler effects. 46. Application of the Hamiltonian method to the problem of the excitation of longitudinal waves

Theoretical Methods for Determining the Interaction of Electomagnetic Waves with Structures

Theoretical Methods for Determining the Interaction of Electomagnetic Waves with Structures PDF Author: J. K. Skwirzynski
Publisher:
ISBN:
Category : Electromagnetic waves
Languages : en
Pages : 913

Get Book Here

Book Description


Electromagnetic Wave Theory

Electromagnetic Wave Theory PDF Author: J. C. Brown
Publisher: Elsevier
ISBN: 1483185923
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
Electromagnetic Wave Theory, Part 2 contains the proceedings of a Symposium on Electromagnetic Wave Theory held at Delft, The Netherlands in September 1965. The symposium provided a forum for discussing electromagnetic wave theory and tackled a wide range of topics, from propagation in nonlinear media to electromagnetic wave propagation and amplification in solid-state plasmas. Electromagnetic waves in nonlinear transmission lines with active parameters are also considered, along with the phase dependence of maser active material Q-factor on pump intensity and frequency. Comprised of four sections, this volume begins with an analysis of two modes of propagation that are coupled through parametric modulation in nonlinear media. The discussion then turns to symmetry restrictions in nonlinear, non-absorbing, non-dispersive media; nonlinear interaction between two beams of plane electromagnetic waves in an anisotropic medium; radiation in periodically non-stationary media; and electromagnetic wave propagation in time-varying media. Subsequent chapters explore the diffraction of electromagnetic waves by plasma structures; resonant electromagnetic scattering from gyrotropic plasmas; scattering and transmission of electromagnetic waves at a statistically rough boundary between two dielectric media; and developments in wavefront reconstruction. This book will be useful for students, practitioners, and researchers in physics.

Mathematical Techniques for Wave Interaction with Flexible Structures

Mathematical Techniques for Wave Interaction with Flexible Structures PDF Author: Trilochan Sahoo
Publisher: CRC Press
ISBN: 1466506040
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book Here

Book Description
Mathematical Techniques for Wave Interaction with Flexible Structures is a thoughtful compilation of the various mathematical techniques used to deal with wave structure interaction problems. The book emphasizes unique determination of the solution for a class of physical problems associated with Laplace- or Helmholtz-type equations satisfying higher order boundary conditions with the applications of the theory of ordinary and partial differential equations, Fourier analysis, and more. Features: Provides a focused mathematical treatment for gravity wave interaction with floating and submerged flexible structures Highlights solution methods for a special class of boundary value problems in wave structure interaction Introduces and expands upon differential equations and the fundamentals of wave structure interaction problems This is an ideal handbook for naval architects, ocean engineers, and geophysicists dealing with the design of floating and/or flexible marine structures. The book’s underlying mathematical tools can be easily extended to deal with physical problems in the area of acoustics, electromagnetic waves, wave propagation in elastic media, and solid‐state physics. Designed for both the classroom and independent study, Mathematical Techniques for Wave Interaction with Flexible Structures enables readers to appreciate and apply the mathematical tools of wave structure interaction research to their own work.

Propagation, Scattering and Dissipation of Electromagnetic Waves

Propagation, Scattering and Dissipation of Electromagnetic Waves PDF Author: A. S. Ilʹinskiĭ
Publisher: IET
ISBN: 9780863412837
Category : Science
Languages : en
Pages : 292

Get Book Here

Book Description
Aimed at physicists and engineers conducting theoretical research or designing microwave and millimetre-wave devices, this study explores methods of calculating microwave absorption in waveguides, resonators and periodic structures.