Author: Virginia Woolf
Publisher:
ISBN: 9781782125457
Category :
Languages : en
Pages : 0
Book Description
This is a compendium of the best works by one of the greatest writers of the 20th century.
Virginia Woolf Collection
Author: Virginia Woolf
Publisher:
ISBN: 9781782125457
Category :
Languages : en
Pages : 0
Book Description
This is a compendium of the best works by one of the greatest writers of the 20th century.
Publisher:
ISBN: 9781782125457
Category :
Languages : en
Pages : 0
Book Description
This is a compendium of the best works by one of the greatest writers of the 20th century.
Ulysses Annotated
Author: Don Gifford
Publisher: Univ of California Press
ISBN: 9780520253971
Category : Fiction
Languages : en
Pages : 700
Book Description
Rev. ed. of: Notes for Joyce: an annotation of James Joyce's Ulysses, 1974.
Publisher: Univ of California Press
ISBN: 9780520253971
Category : Fiction
Languages : en
Pages : 700
Book Description
Rev. ed. of: Notes for Joyce: an annotation of James Joyce's Ulysses, 1974.
Classical and Multilinear Harmonic Analysis
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Publisher: Cambridge University Press
ISBN: 1107031826
Category : Mathematics
Languages : en
Pages : 341
Book Description
This contemporary graduate-level text in harmonic analysis introduces the reader to a wide array of analytical results and techniques.
Stress, Vibration, and Wave Analysis in Aerospace Composites
Author: Victor Giurgiutiu
Publisher: Academic Press
ISBN: 0128133090
Category : Technology & Engineering
Languages : en
Pages : 947
Book Description
Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications presents a unified approach to studying and understanding stress, vibrations and waves in composite materials used in aerospace applications. Combining topics that are typically found across an array of various sources, the book starts by looking at the properties of various composite materials, progresses to coverage of an analysis of stress, vibration and waves and then concludes with a discussion of various structural health monitoring (SHM) and nondestructive evaluation (NDE) techniques and applications based on the analysis developed earlier in the book. Every chapter of the book contains a variety of worked-out examples to illustrate and tie together underlying theory and specific applications. The MATLAB code used to generate these examples is available on the book's companion website, as are solution documents and additional MATLAB code for problems and exercises featured in each chapter. - Presents a comprehensive treatment of aerospace composites, starting with composite material properties and then covering an analysis of stress, vibration and waves, and culminating with SHM and NDE applications - Provides an understanding of the use and application of stress, vibration and waves to detect composite damage and monitor growth - Features an array of worked-out examples, problems and exercises - Includes access to a companion website that features MATLAB codes for worked-out examples, along with problems, exercises and their solutions
Publisher: Academic Press
ISBN: 0128133090
Category : Technology & Engineering
Languages : en
Pages : 947
Book Description
Stress, Vibration, and Wave Analysis in Aerospace Composites: SHM and NDE Applications presents a unified approach to studying and understanding stress, vibrations and waves in composite materials used in aerospace applications. Combining topics that are typically found across an array of various sources, the book starts by looking at the properties of various composite materials, progresses to coverage of an analysis of stress, vibration and waves and then concludes with a discussion of various structural health monitoring (SHM) and nondestructive evaluation (NDE) techniques and applications based on the analysis developed earlier in the book. Every chapter of the book contains a variety of worked-out examples to illustrate and tie together underlying theory and specific applications. The MATLAB code used to generate these examples is available on the book's companion website, as are solution documents and additional MATLAB code for problems and exercises featured in each chapter. - Presents a comprehensive treatment of aerospace composites, starting with composite material properties and then covering an analysis of stress, vibration and waves, and culminating with SHM and NDE applications - Provides an understanding of the use and application of stress, vibration and waves to detect composite damage and monitor growth - Features an array of worked-out examples, problems and exercises - Includes access to a companion website that features MATLAB codes for worked-out examples, along with problems, exercises and their solutions
Classical and Multilinear Harmonic Analysis: Volume 2
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1139620460
Category : Mathematics
Languages : en
Pages : 341
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Publisher: Cambridge University Press
ISBN: 1139620460
Category : Mathematics
Languages : en
Pages : 341
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Fourier Integrals in Classical Analysis
Author: Christopher D. Sogge
Publisher: Cambridge University Press
ISBN: 110823433X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat–Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.
Publisher: Cambridge University Press
ISBN: 110823433X
Category : Mathematics
Languages : en
Pages : 349
Book Description
This advanced monograph is concerned with modern treatments of central problems in harmonic analysis. The main theme of the book is the interplay between ideas used to study the propagation of singularities for the wave equation and their counterparts in classical analysis. In particular, the author uses microlocal analysis to study problems involving maximal functions and Riesz means using the so-called half-wave operator. To keep the treatment self-contained, the author begins with a rapid review of Fourier analysis and also develops the necessary tools from microlocal analysis. This second edition includes two new chapters. The first presents Hörmander's propagation of singularities theorem and uses this to prove the Duistermaat–Guillemin theorem. The second concerns newer results related to the Kakeya conjecture, including the maximal Kakeya estimates obtained by Bourgain and Wolff.
Classical Numerical Analysis
Author: Abner J. Salgado
Publisher: Cambridge University Press
ISBN: 1108950108
Category : Mathematics
Languages : en
Pages : 938
Book Description
Numerical Analysis is a broad field, and coming to grips with all of it may seem like a daunting task. This text provides a thorough and comprehensive exposition of all the topics contained in a classical graduate sequence in numerical analysis. With an emphasis on theory and connections with linear algebra and analysis, the book shows all the rigor of numerical analysis. Its high level and exhaustive coverage will prepare students for research in the field and become a valuable reference as they continue their career. Students will appreciate the simple notation, clear assumptions and arguments, as well as the many examples and classroom-tested exercises ranging from simple verification to qualifying exam-level problems. In addition to the many examples with hand calculations, readers will also be able to translate theory into practical computational codes by running sample MATLAB codes as they try out new concepts.
Publisher: Cambridge University Press
ISBN: 1108950108
Category : Mathematics
Languages : en
Pages : 938
Book Description
Numerical Analysis is a broad field, and coming to grips with all of it may seem like a daunting task. This text provides a thorough and comprehensive exposition of all the topics contained in a classical graduate sequence in numerical analysis. With an emphasis on theory and connections with linear algebra and analysis, the book shows all the rigor of numerical analysis. Its high level and exhaustive coverage will prepare students for research in the field and become a valuable reference as they continue their career. Students will appreciate the simple notation, clear assumptions and arguments, as well as the many examples and classroom-tested exercises ranging from simple verification to qualifying exam-level problems. In addition to the many examples with hand calculations, readers will also be able to translate theory into practical computational codes by running sample MATLAB codes as they try out new concepts.
Classical and Multilinear Harmonic Analysis: Volume 1
Author: Camil Muscalu
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Publisher: Cambridge University Press
ISBN: 1139619160
Category : Mathematics
Languages : en
Pages : 389
Book Description
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)
Author: Remi Carles
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367
Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Publisher: World Scientific
ISBN: 9811227926
Category : Mathematics
Languages : en
Pages : 367
Book Description
The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.
Wavelet and Wave Analysis as Applied to Materials with Micro Or Nanostructure
Author: Carlo Cattani
Publisher: World Scientific
ISBN: 9812707840
Category : Science
Languages : en
Pages : 473
Book Description
This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three.All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems that are proposed in this book. By combining these new scientific concepts into a unitary model and enlightening readers on this pioneering field of research, readers will hopefully be inspired to explore the more advanced aspects of this promising scientific direction. The application of wavelet analysis to nanomaterials and waves in nanocomposites can be very appealing to both specialists working on theoretical developments in wavelets as well as specialists applying these methods and experiments in the mechanics of materials.
Publisher: World Scientific
ISBN: 9812707840
Category : Science
Languages : en
Pages : 473
Book Description
This seminal book unites three different areas of modern science: the micromechanics and nanomechanics of composite materials; wavelet analysis as applied to physical problems; and the propagation of a new type of solitary wave in composite materials, nonlinear waves. Each of the three areas is described in a simple and understandable form, focusing on the many perspectives of the links among the three.All of the techniques and procedures are described here in the clearest and most open form, enabling the reader to quickly learn and use them when faced with the new and more advanced problems that are proposed in this book. By combining these new scientific concepts into a unitary model and enlightening readers on this pioneering field of research, readers will hopefully be inspired to explore the more advanced aspects of this promising scientific direction. The application of wavelet analysis to nanomaterials and waves in nanocomposites can be very appealing to both specialists working on theoretical developments in wavelets as well as specialists applying these methods and experiments in the mechanics of materials.