The Use of Real-time Connected Vehicles and HERE Data in Developing an Automated Freeway Incident Detection Algorithm

The Use of Real-time Connected Vehicles and HERE Data in Developing an Automated Freeway Incident Detection Algorithm PDF Author: Hendry Nyanza Imani
Publisher:
ISBN:
Category : AUTOSATE.
Languages : en
Pages :

Get Book Here

Book Description
Traffic incidents cause severe problems on roadways. About 6.3 million highway crashes are reported annually only in the United States, among which more than 32,000 are fatal crashes. Reducing the risk of traffic incidents is key to effective traffic incident management (TIM). Quick detection of unexpected traffic incidents on roadways contribute to quick clearance and hence improve safety. Existing techniques for the detection of freeway incidents are not reliable. This study focuses on exploring the potential of emerging connected vehicles (CV) technology in automated freeway incident detection in the mixed traffic environment. The study aims at developing an automated freeway incident detection algorithm that will take advantage of the CV technology in providing fast and reliable incident detection. Lee Roy Selmon Expressway was chosen for this study because of the THEA CV data availability. The findings of the study show that emerging CV technology generates data that are useful for automated freeway incident detection, although the market penetration rate was low (6.46%). The algorithm performance in terms of detection rate (DR) and false alarm rate (FAR) indicated that CV data resulted into 31.71% DR and zero FAR while HERE yielded a 70.95% DR and 9.02% FAR. Based on Pearson's correlation analysis, the incidents detected by the CV data were found to be similar to the ones detected by the HERE data. The statistical comparison by ANOVA shows that there is a difference in the algorithm's detection time when using CV data and HERE data. 17.07% of all incidents were detected quicker when using CV data compared to HERE data, while 7.32% were detected quicker when using HERE data compared to CV data.

The Use of Real-time Connected Vehicles and HERE Data in Developing an Automated Freeway Incident Detection Algorithm

The Use of Real-time Connected Vehicles and HERE Data in Developing an Automated Freeway Incident Detection Algorithm PDF Author: Hendry Nyanza Imani
Publisher:
ISBN:
Category : AUTOSATE.
Languages : en
Pages :

Get Book Here

Book Description
Traffic incidents cause severe problems on roadways. About 6.3 million highway crashes are reported annually only in the United States, among which more than 32,000 are fatal crashes. Reducing the risk of traffic incidents is key to effective traffic incident management (TIM). Quick detection of unexpected traffic incidents on roadways contribute to quick clearance and hence improve safety. Existing techniques for the detection of freeway incidents are not reliable. This study focuses on exploring the potential of emerging connected vehicles (CV) technology in automated freeway incident detection in the mixed traffic environment. The study aims at developing an automated freeway incident detection algorithm that will take advantage of the CV technology in providing fast and reliable incident detection. Lee Roy Selmon Expressway was chosen for this study because of the THEA CV data availability. The findings of the study show that emerging CV technology generates data that are useful for automated freeway incident detection, although the market penetration rate was low (6.46%). The algorithm performance in terms of detection rate (DR) and false alarm rate (FAR) indicated that CV data resulted into 31.71% DR and zero FAR while HERE yielded a 70.95% DR and 9.02% FAR. Based on Pearson's correlation analysis, the incidents detected by the CV data were found to be similar to the ones detected by the HERE data. The statistical comparison by ANOVA shows that there is a difference in the algorithm's detection time when using CV data and HERE data. 17.07% of all incidents were detected quicker when using CV data compared to HERE data, while 7.32% were detected quicker when using HERE data compared to CV data.

Developing a Real-time Freeway Incident Detection Model Using Machine Learning Techniques

Developing a Real-time Freeway Incident Detection Model Using Machine Learning Techniques PDF Author: Moggan Motamed
Publisher:
ISBN:
Category :
Languages : en
Pages : 280

Get Book Here

Book Description
Real-time incident detection on freeways plays an important part in any modern traffic management operation by maximizing road system performance. The US Department of Transportation (US-DOT) estimates that over half of all congestion events are caused by highway incidents rather than by rush-hour traffic in big cities. An effective incident detection and management operation cannot prevent incidents, however, it can diminish the impacts of non-recurring congestion problems. The main purpose of real-time incident detection is to reduce delay and the number of secondary accidents, and to improve safety and travel information during unusual traffic conditions. The majority of automatic incident detection algorithms are focused on identifying traffic incident patterns but do not adequately investigate possible similarities in patterns observed under incident-free conditions. When traffic demand exceeds road capacity, density exceeds critical values and traffic speed decreases, the traffic flow process enters a highly unstable regime, often referred to as “stop-and-go” conditions. The most challenging part of real-time incident detection is the recognition of traffic pattern changes when incidents happen during stop-and-go conditions. Recently, short-term freeway congestion detection algorithms have been proposed as solutions to real-time incident detection, using procedures known as dynamic time warping (DTW) and the support vector machine (SVM). Some studies have shown these procedures to produce higher detection rates than Artificial Intelligence (AI) algorithms with lower false alarm rates. These proposed methods combine data mining and time series classification techniques. Such methods comprise interdisciplinary efforts, with the confluence of a set of disciplines, including statistics, machine learning, Artificial Intelligence, and information science. A literature review of the methodology and application of these two models will be presented in the following chapters. SVM, Naïve Bayes (NB), and Random Forest classifier models incorporating temporal data and an ensemble technique, when compared with the original SVM model, achieve improved detection rates by optimizing the parameter thresholds. The main purpose of this dissertation is to examine the most robust algorithms (DTW, SVM, Naïve Bayes, Decision Tree, SVM Ensemble) and to develop a generalized automatic incident detection algorithm characterized by high detection rates and low false alarm rates during peak hours. In this dissertation, the transferability of the developed incident detection model was tested using the Dallas and Miami field datasets. Even though the primary service of urban traffic control centers includes detecting incidents and facilitating incident clearance, estimating freeway incident durations remains a significant incident management challenge for traffic operations centers. As a next step this study examines the effect of V/C (volume/capacity) ratio, level of service (LOS), weather condition, detection mode, number of involved lanes, and incident type on the time duration of traffic incidents. Results of this effort can benefit traffic control centers improving the accuracy of estimated incident duration, thereby improving the authenticity of traveler guidance information.

Optimal Design and Operation of Freeway Incident Detection-service Systems

Optimal Design and Operation of Freeway Incident Detection-service Systems PDF Author: Adolf Darlington May
Publisher:
ISBN:
Category : Electronics in traffic engineering
Languages : en
Pages : 58

Get Book Here

Book Description
This report describes optimization techniques which have been developed and applied for the evaluation of design and operations of freeway incident detection-service systems. The report has four major parts: (1) analysis and design of stationary service systems; (2) analysis and design of incident detection algorithms; (3) analysis and design of incident response systems; and (4) analysis and design of freeway on-ramp traffic-responsive control methodology for normal and incident conditions.

Towards Connected and Autonomous Vehicle Highways

Towards Connected and Autonomous Vehicle Highways PDF Author: Umar Zakir Abdul Hamid
Publisher: Springer Nature
ISBN: 3030660427
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
This book combines comprehensive multi-angle discussions on fully connected and automated vehicle highway implementation. It covers the current progress of the works towards autonomous vehicle highway development, which encompasses the discussion on the technical, social, and policy as well as security aspects of Connected and Autonomous Vehicles (CAV) topics. This, in return, will be beneficial to a vast amount of readers who are interested in the topics of CAV, Automated Highway and Smart City, among many others. Topics include, but are not limited to, Autonomous Vehicle in the Smart City, Automated Highway, Smart-Cities Transportation, Mobility as a Service, Intelligent Transportation Systems, Data Management of Connected and Autonomous Vehicle, Autonomous Trucks, and Autonomous Freight Transportation. Brings together contributions discussing the latest research in full automated highway implementation; Discusses topics such as autonomous vehicles, intelligent transportation systems, and smart highways; Features contributions from researchers, academics, and professionals from a broad perspective.

Real-time Traffic Safety Evaluation in the Context of Connected Vehicles and Mobile Sensing

Real-time Traffic Safety Evaluation in the Context of Connected Vehicles and Mobile Sensing PDF Author: Pei Li
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Recently, with the development of connected vehicles and mobile sensing technologies, vehicle-based data become much easier to obtain. However, only few studies have investigated the application of this kind of novel data to real-time traffic safety evaluation. This dissertation aims to conduct a series of real-time traffic safety studies by integrating all kinds of available vehicle-based data sources. First, this dissertation developed a deep learning model for identifying vehicle maneuvers using data from smartphone sensors (i.e., accelerometer and gyroscope). The proposed model was robust and suitable for real-time application as it required less processing of smartphone sensor data compared with the existing studies. Besides, a semi-supervised learning algorithm was proposed to make use of the massive unlabeled sensor data. The proposed algorithm could alleviate the cost of data preparation and improve model transferability. Second, trajectory data from 300 buses were used to develop a real-time crash likelihood prediction model for urban arterials. Results from extensive experiments illustrated the feasibility of using novel vehicle trajectory data to predict real-time crash likelihood. Moreover, to improve the model’s performance, data fusion techniques were proposed to integrated trajectory data from various vehicle types. The proposed data fusion techniques significantly improved the accuracy of crash likelihood prediction in terms of sensitivity and false alarm rate. Third, to improve pedestrian and bicycle safety, different vehicle-based surrogate safety measures, such as hard acceleration, hard deceleration, and long stop, were proposed for evaluating pedestrian and bicycle safety using vehicle trajectory data. In summary, the results from this dissertation can be further applied to real-time safety applications (e.g., real-time crash likelihood prediction and visualization system) in the context of proactive traffic management.

Comparative Performance of Freeway Automated Incident Detection Algorithms

Comparative Performance of Freeway Automated Incident Detection Algorithms PDF Author: H. Dia
Publisher:
ISBN:
Category : Algorithms
Languages : en
Pages : 40

Get Book Here

Book Description


Integrating and Analyzing Driver, Vehicle and Road Infrastructure Volatilities Using Connected and Instrumented Vehicles Technology

Integrating and Analyzing Driver, Vehicle and Road Infrastructure Volatilities Using Connected and Instrumented Vehicles Technology PDF Author: Mohsen Kamrani
Publisher:
ISBN:
Category : Automobile driving
Languages : en
Pages : 157

Get Book Here

Book Description
This dissertation proposes a framework on how to process and analyze the data available from the driver, the vehicle and the road infrastructure i.e. data streams in real-time. Particularly, it conceptualize measures of driver, vehicle and road infrastructure performance and process the volatilities in data streams from sensors. It also provides a framework for real-time identification of anomalies, linking them with alerts, warnings and control assists. We explore different measures of driving volatility used to explain crash frequencies at intersections through developing a unique database that integrates intersection crash and inventory data with real-world Basic Safety Messages logged by connected vehicles. We introduce location-based volatility (LBV) as a proactive safety measure, quantifying variability in instantaneous driving decisions at intersections. Such an analysis is fundamental towards proactive intersection safety management. In addition, Markov Decision Process (MDP) framework is used to learn observed behavior by analyzing instantaneous driving decisions of acceleration, deceleration, and maintaining constant speed. Moreover, the developed measures of volatilities are applied to speed profiles from the Strategic Highway Research Program 2 (SHRP2) Naturalistic Driving Study (NDS) to come up with the most accurate crash-prediction model with used for real-time driving assist warning generation. Finally, by incorporating the data from the driver, vehicle and infrastructure into the analysis, the impact of detailed pre-crash driving behavior and recently developed measures of driving volatility on crash and near-crash risks is investigated. The knowledge gained from studying individual driving behaviors can be used to generate alerts and warnings for the driver of the host vehicle and to be passed via connected vehicle technology with the purpose of improving safety. The methods applied in this dissertation can form a foundation for human driver behavior prediction and personally revealed choice extraction. They also can help proactively identify locations with high levels of driving volatility (i.e., hot spots where crashes are waiting to happen) as candidates for safety improvements. Proactive warnings and alerts can be generated about potential hazards and transmitted to drivers via connected vehicle technologies such as road-side equipment, increasing drivers' situational and safety awareness.

Real-time Crash Prediction of Urban Highways Using Machine Learning Algorithms

Real-time Crash Prediction of Urban Highways Using Machine Learning Algorithms PDF Author: Mirza Ahammad Sharif
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Motor vehicle crashes in the United States continue to be a serious safety concern for state highway agencies, with over 30,000 fatal crashes reported each year. The World Health Organization (WHO) reported in 2016 that vehicle crashes were the eighth leading cause of death globally. Crashes on roadways are rare and random events that occur due to the result of the complex relationship between the driver, vehicle, weather, and roadway. A significant breadth of research has been conducted to predict and understand why crashes occur through spatial and temporal analyses, understanding information about the driver and roadway, and identification of hazardous locations through geographic information system (GIS) applications. Also, previous research studies have investigated the effectiveness of safety devices designed to reduce the number and severity of crashes. Today, data-driven traffic safety studies are becoming an essential aspect of the planning, design, construction, and maintenance of the roadway network. This can only be done with the assistance of state highway agencies collecting and synthesizing historical crash data, roadway geometry data, and environmental data being collected every day at a resolution that will help researchers develop powerful crash prediction tools. The objective of this research study was to predict vehicle crashes in real-time. This exploratory analysis compared three well-known machine learning methods, including logistic regression, random forest, support vector machine. Additionally, another methodology was developed using variables selected from random forest models that were inserted into the support vector machine model. The study review of the literature noted that this study's selected methods were found to be more effective in terms of prediction power. A total of 475 crashes were identified from the selected urban highway network in Kansas City, Kansas. For each of the 475 identified crashes, six no-crash events were collected at the same location. This was necessary so that the predictive models could distinguish a crash-prone traffic operational condition from regular traffic flow conditions. Multiple data sources were fused to create a database including traffic operational data from the KC Scout traffic management center, crash and roadway geometry data from the Kanas Department of Transportation; and weather data from NOAA. Data were downloaded from five separate roadway radar sensors close to the crash location. This enable understanding of the traffic flow along the roadway segment (upstream and downstream) during the crash. Additionally, operational data from each radar sensor were collected in five minutes intervals up to 30 minutes prior to a crash occurring. Although six no-crash events were collected for each crash observation, the ratio of crash and no-crash were then reduced to 1:4 (four non-crash events), and 1:2 (two non-crash events) to investigate possible effects of class imbalance on crash prediction. Also, 60%, 70%, and 80% of the data were selected in training to develop each model. The remaining data were then used for model validation. The data used in training ratios were varied to identify possible effects of training data as it relates to prediction power. Additionally, a second database was developed in which variables were log-transformed to reduce possible skewness in the distribution. Model results showed that the size of the dataset increased the overall accuracy of crash prediction. The dataset with a higher observation count could classify more data accurately. The highest accuracies in all three models were observed using the dataset of a 1:6 ratio (one crash event for six no-crash events). The datasets with1:2 ratio predicted 13% to 18% lower than the 1:6 ratio dataset. However, the sensitivity (true positive prediction) was observed highest for the dataset of a 1:2 ratio. It was found that reducing the response class imbalance; the sensitivity could be increased with the disadvantage of a reduction in overall prediction accuracy. The effects of the split ratio were not significantly different in overall accuracy. However, the sensitivity was found to increase with an increase in training data. The logistic regression model found an average of 30.79% (with a standard deviation of 5.02) accurately. The random forest models predicted an average of 13.36% (with a standard deviation of 9.50) accurately. The support vector machine models predicted an average of 29.35% (with a standard deviation of 7.34) accurately. The hybrid approach of random forest and support vector machine models predicted an average of 29.86% (with a standard deviation of 7.33) accurately. The significant variables found from this study included the variation in speed between the posted speed limit and average roadway traffic speed around the crash location. The variations in speed and vehicle per hour between upstream and downstream traffic of a crash location in the previous five minutes before a crash occurred were found to be significant as well. This study provided an important step in real-time crash prediction and complemented many previous research studies found in the literature review. Although the models investigate were somewhat inconclusive, this study provided an investigation of data, variables, and combinations of variables that have not been investigated previously. Real-time crash prediction is expected to assist with the on-going development of connected and autonomous vehicles as the fleet mix begins to change, and new variables can be collected, and data resolution becomes greater. Real-time crash prediction models will also continue to advance highway safety as metropolitan areas continue to grow, and congestion continues to increase.

Urban System Operation and Freeways

Urban System Operation and Freeways PDF Author: National Research Council (U.S.). Transportation Research Board
Publisher:
ISBN:
Category : Political Science
Languages : en
Pages : 124

Get Book Here

Book Description


Real-time Prediction of Vehicle Locations in a Connected Vehicle Environment

Real-time Prediction of Vehicle Locations in a Connected Vehicle Environment PDF Author: Noah J. Goodall
Publisher:
ISBN:
Category : Traffic flow
Languages : en
Pages : 0

Get Book Here

Book Description
The wireless communication between vehicles and the transportation infrastructure, referred to as the connected vehicle environment, has the potential to improve driver safety and mobility drastically for drivers. However, the rollout of connected vehicle technologies in passenger vehicles is expected to last 30 years or more, during which time traffic will be a mix of vehicles equipped with the technology and vehicles that are not equipped with the technology. Most mobility applications tested in simulation, such as traffic signal control and performance measurement, show greater benefits as a larger percentage of vehicles are equipped with connected vehicle technologies.The purpose of this study was to develop and investigate techniques to estimate the positions of unequipped vehicles based on the behaviors of equipped vehicles. Two algorithms were developed for this purpose one for use with arterials and one for use with freeways. Both algorithms were able to estimate the positions of a portion of unequipped vehicles in the same lane within a longitudinal distance. Further, two connected vehicle mobility applications were able to use these estimates to produce small performance improvements in simulation at low penetration rates of connected vehicle technologies when compared to using connected vehicle data alone, with up to an 8 percent reduction in delay for a ramp metering application and a 4.4 percent reduction in delay for a traffic signal control application.The study recommends that the Virginia Center for Transportation Innovation and Research (VCTIR) continue to assess the data quality of connected vehicle field deployments to determine if the developed algorithms can be deployed. If data quality is deemed acceptable and if a connected vehicle application is tested in a field deployment, VCTIR should evaluate the use of the location estimation algorithms to improve the applications performance at low penetration rates.This is expected to result in reduced delays and improved flow for connected vehicle mobility applications during times when few vehicles are able to communicate wirelessly.