Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 038722758X
Category : Mathematics
Languages : en
Pages : 215
Book Description
Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter
Matrices
Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 038722758X
Category : Mathematics
Languages : en
Pages : 215
Book Description
Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter
Publisher: Springer Science & Business Media
ISBN: 038722758X
Category : Mathematics
Languages : en
Pages : 215
Book Description
Clear and concise introduction to matrices with elegant proofs; Of interest to scientists from many disciplines; Gives many interesting applications to different parts of mathematics, such as algebra, analysis and complexity theory; Contains 160 exercises, half of them on advanced material; Includes at least one advanced result per chapter
The Theory of Matrices in Numerical Analysis
Author: Alston S. Householder
Publisher: Courier Corporation
ISBN: 0486145638
Category : Mathematics
Languages : en
Pages : 274
Book Description
This text presents selected aspects of matrix theory that are most useful in developing computational methods for solving linear equations and finding characteristic roots. Topics include norms, bounds and convergence; localization theorems; more. 1964 edition.
Publisher: Courier Corporation
ISBN: 0486145638
Category : Mathematics
Languages : en
Pages : 274
Book Description
This text presents selected aspects of matrix theory that are most useful in developing computational methods for solving linear equations and finding characteristic roots. Topics include norms, bounds and convergence; localization theorems; more. 1964 edition.
Numerical Matrix Analysis
Author: Ilse C. F. Ipsen
Publisher: SIAM
ISBN: 0898716764
Category : Mathematics
Languages : en
Pages : 135
Book Description
Matrix analysis presented in the context of numerical computation at a basic level.
Publisher: SIAM
ISBN: 0898716764
Category : Mathematics
Languages : en
Pages : 135
Book Description
Matrix analysis presented in the context of numerical computation at a basic level.
Special Matrices and Their Applications in Numerical Mathematics
Author: Miroslav Fiedler
Publisher: Courier Corporation
ISBN: 0486783480
Category : Mathematics
Languages : en
Pages : 386
Book Description
This revised and corrected second edition of a classic on special matrices provides researchers in numerical linear algebra and students of general computational mathematics with an essential reference. 1986 edition.
Publisher: Courier Corporation
ISBN: 0486783480
Category : Mathematics
Languages : en
Pages : 386
Book Description
This revised and corrected second edition of a classic on special matrices provides researchers in numerical linear algebra and students of general computational mathematics with an essential reference. 1986 edition.
Functions of Matrices
Author: Nicholas J. Higham
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Publisher: SIAM
ISBN: 0898717779
Category : Mathematics
Languages : en
Pages : 445
Book Description
A thorough and elegant treatment of the theory of matrix functions and numerical methods for computing them, including an overview of applications, new and unpublished research results, and improved algorithms. Key features include a detailed treatment of the matrix sign function and matrix roots; a development of the theory of conditioning and properties of the Fre;chet derivative; Schur decomposition; block Parlett recurrence; a thorough analysis of the accuracy, stability, and computational cost of numerical methods; general results on convergence and stability of matrix iterations; and a chapter devoted to the f(A)b problem. Ideal for advanced courses and for self-study, its broad content, references and appendix also make this book a convenient general reference. Contains an extensive collection of problems with solutions and MATLAB implementations of key algorithms.
Matrices
Author: Denis Serre
Publisher: Springer Science & Business Media
ISBN: 1441976833
Category : Mathematics
Languages : en
Pages : 291
Book Description
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Publisher: Springer Science & Business Media
ISBN: 1441976833
Category : Mathematics
Languages : en
Pages : 291
Book Description
In this book, Denis Serre begins by providing a clean and concise introduction to the basic theory of matrices. He then goes on to give many interesting applications of matrices to different aspects of mathematics and also other areas of science and engineering. With forty percent new material, this second edition is significantly different from the first edition. Newly added topics include: • Dunford decomposition, • tensor and exterior calculus, polynomial identities, • regularity of eigenvalues for complex matrices, • functional calculus and the Dunford–Taylor formula, • numerical range, • Weyl's and von Neumann’s inequalities, and • Jacobi method with random choice. The book mixes together algebra, analysis, complexity theory and numerical analysis. As such, this book will provide many scientists, not just mathematicians, with a useful and reliable reference. It is intended for advanced undergraduate and graduate students with either applied or theoretical goals. This book is based on a course given by the author at the École Normale Supérieure de Lyon.
Matrix Algebra
Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536
Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Publisher: Springer Science & Business Media
ISBN: 0387708723
Category : Computers
Languages : en
Pages : 536
Book Description
Matrix algebra is one of the most important areas of mathematics for data analysis and for statistical theory. This much-needed work presents the relevant aspects of the theory of matrix algebra for applications in statistics. It moves on to consider the various types of matrices encountered in statistics, such as projection matrices and positive definite matrices, and describes the special properties of those matrices. Finally, it covers numerical linear algebra, beginning with a discussion of the basics of numerical computations, and following up with accurate and efficient algorithms for factoring matrices, solving linear systems of equations, and extracting eigenvalues and eigenvectors.
Matrix Analysis
Author: Rajendra Bhatia
Publisher: Springer Science & Business Media
ISBN: 1461206537
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Publisher: Springer Science & Business Media
ISBN: 1461206537
Category : Mathematics
Languages : en
Pages : 360
Book Description
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
Applications of the Theory of Matrices
Author: F. R. Gantmacher
Publisher: Courier Corporation
ISBN: 0486445542
Category : Mathematics
Languages : en
Pages : 336
Book Description
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
Publisher: Courier Corporation
ISBN: 0486445542
Category : Mathematics
Languages : en
Pages : 336
Book Description
The breadth of matrix theory's applications is reflected by this volume, which features material of interest to applied mathematicians as well as to control engineers studying stability of a servo-mechanism and numerical analysts evaluating the roots of a polynomial. Starting with a survey of complex symmetric, antisymmetric, and orthogonal matrices, the text advances to explorations of singular bundles of matrices and matrices with nonnegative elements. Applied mathematicians will take particular note of the full and readable chapter on applications of matrix theory to the study of systems of linear differential equations, and the text concludes with an exposition on the Routh-Hurwitz problem plus several helpful appendixes. 1959 edition.
Matrix Theory
Author: Joel N. Franklin
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Publisher: Courier Corporation
ISBN: 0486136388
Category : Mathematics
Languages : en
Pages : 319
Book Description
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.