Author: Florian Jentsch
Publisher: CRC Press
ISBN: 1317119479
Category : Computers
Languages : en
Pages : 467
Book Description
Soldier-robot teams will be an important component of future battle spaces, creating a complex but potentially more survivable and effective combat force. The complexity of the battlefield of the future presents its own problems. The variety of robotic systems and the almost infinite number of possible military missions create a dilemma for researchers who wish to predict human-robot interactions (HRI) performance in future environments. Human-Robot Interactions in Future Military Operations provides an opportunity for scientists investigating military issues related to HRI to present their results cohesively within a single volume. The issues range from operators interacting with small ground robots and aerial vehicles to supervising large, near-autonomous vehicles capable of intelligent battlefield behaviors. The ability of the human to 'team' with intelligent unmanned systems in such environments is the focus of the volume. As such, chapters are written by recognized leaders within their disciplines and they discuss their research in the context of a broad-based approach. Therefore the book allows researchers from differing disciplines to be brought up to date on both theoretical and methodological issues surrounding human-robot interaction in military environments. The overall objective of this volume is to illuminate the challenges and potential solutions for military HRI through discussion of the many approaches that have been utilized in order to converge on a better understanding of this relatively complex concept. It should be noted that many of these issues will generalize to civilian applications as robotic technology matures. An important outcome is the focus on developing general human-robot teaming principles and guidelines to help both the human factors design and training community develop a better understanding of this nascent but revolutionary technology. Much of the research within the book is based on the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) 5-year Army Technology Objective (ATO) research program. The program addressed HRI and teaming for both aerial and ground robotic assets in conjunction with the U.S. Army Tank and Automotive Research and Development Center (TARDEC) and the Aviation and Missile Development Center (AMRDEC) The purpose of the program was to understand HRI issues in order to develop and evaluate technologies to improve HRI battlefield performance for Future Combat Systems (FCS). The work within this volume goes beyond the research results to encapsulate the ATO's findings and discuss them in a broader context in order to understand both their military and civilian implications. For this reason, scientists conducting related research have contributed additional chapters to widen the scope of the original research boundaries.
Human-Robot Interactions in Future Military Operations
Author: Florian Jentsch
Publisher: CRC Press
ISBN: 1317119479
Category : Computers
Languages : en
Pages : 467
Book Description
Soldier-robot teams will be an important component of future battle spaces, creating a complex but potentially more survivable and effective combat force. The complexity of the battlefield of the future presents its own problems. The variety of robotic systems and the almost infinite number of possible military missions create a dilemma for researchers who wish to predict human-robot interactions (HRI) performance in future environments. Human-Robot Interactions in Future Military Operations provides an opportunity for scientists investigating military issues related to HRI to present their results cohesively within a single volume. The issues range from operators interacting with small ground robots and aerial vehicles to supervising large, near-autonomous vehicles capable of intelligent battlefield behaviors. The ability of the human to 'team' with intelligent unmanned systems in such environments is the focus of the volume. As such, chapters are written by recognized leaders within their disciplines and they discuss their research in the context of a broad-based approach. Therefore the book allows researchers from differing disciplines to be brought up to date on both theoretical and methodological issues surrounding human-robot interaction in military environments. The overall objective of this volume is to illuminate the challenges and potential solutions for military HRI through discussion of the many approaches that have been utilized in order to converge on a better understanding of this relatively complex concept. It should be noted that many of these issues will generalize to civilian applications as robotic technology matures. An important outcome is the focus on developing general human-robot teaming principles and guidelines to help both the human factors design and training community develop a better understanding of this nascent but revolutionary technology. Much of the research within the book is based on the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) 5-year Army Technology Objective (ATO) research program. The program addressed HRI and teaming for both aerial and ground robotic assets in conjunction with the U.S. Army Tank and Automotive Research and Development Center (TARDEC) and the Aviation and Missile Development Center (AMRDEC) The purpose of the program was to understand HRI issues in order to develop and evaluate technologies to improve HRI battlefield performance for Future Combat Systems (FCS). The work within this volume goes beyond the research results to encapsulate the ATO's findings and discuss them in a broader context in order to understand both their military and civilian implications. For this reason, scientists conducting related research have contributed additional chapters to widen the scope of the original research boundaries.
Publisher: CRC Press
ISBN: 1317119479
Category : Computers
Languages : en
Pages : 467
Book Description
Soldier-robot teams will be an important component of future battle spaces, creating a complex but potentially more survivable and effective combat force. The complexity of the battlefield of the future presents its own problems. The variety of robotic systems and the almost infinite number of possible military missions create a dilemma for researchers who wish to predict human-robot interactions (HRI) performance in future environments. Human-Robot Interactions in Future Military Operations provides an opportunity for scientists investigating military issues related to HRI to present their results cohesively within a single volume. The issues range from operators interacting with small ground robots and aerial vehicles to supervising large, near-autonomous vehicles capable of intelligent battlefield behaviors. The ability of the human to 'team' with intelligent unmanned systems in such environments is the focus of the volume. As such, chapters are written by recognized leaders within their disciplines and they discuss their research in the context of a broad-based approach. Therefore the book allows researchers from differing disciplines to be brought up to date on both theoretical and methodological issues surrounding human-robot interaction in military environments. The overall objective of this volume is to illuminate the challenges and potential solutions for military HRI through discussion of the many approaches that have been utilized in order to converge on a better understanding of this relatively complex concept. It should be noted that many of these issues will generalize to civilian applications as robotic technology matures. An important outcome is the focus on developing general human-robot teaming principles and guidelines to help both the human factors design and training community develop a better understanding of this nascent but revolutionary technology. Much of the research within the book is based on the Human Research and Engineering Directorate (HRED), U.S. Army Research Laboratory (ARL) 5-year Army Technology Objective (ATO) research program. The program addressed HRI and teaming for both aerial and ground robotic assets in conjunction with the U.S. Army Tank and Automotive Research and Development Center (TARDEC) and the Aviation and Missile Development Center (AMRDEC) The purpose of the program was to understand HRI issues in order to develop and evaluate technologies to improve HRI battlefield performance for Future Combat Systems (FCS). The work within this volume goes beyond the research results to encapsulate the ATO's findings and discuss them in a broader context in order to understand both their military and civilian implications. For this reason, scientists conducting related research have contributed additional chapters to widen the scope of the original research boundaries.
Autonomous Vehicles in Support of Naval Operations
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309181232
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Publisher: National Academies Press
ISBN: 0309181232
Category : Technology & Engineering
Languages : en
Pages : 256
Book Description
Autonomous vehicles (AVs) have been used in military operations for more than 60 years, with torpedoes, cruise missiles, satellites, and target drones being early examples.1 They have also been widely used in the civilian sector-for example, in the disposal of explosives, for work and measurement in radioactive environments, by various offshore industries for both creating and maintaining undersea facilities, for atmospheric and undersea research, and by industry in automated and robotic manufacturing. Recent military experiences with AVs have consistently demonstrated their value in a wide range of missions, and anticipated developments of AVs hold promise for increasingly significant roles in future naval operations. Advances in AV capabilities are enabled (and limited) by progress in the technologies of computing and robotics, navigation, communications and networking, power sources and propulsion, and materials. Autonomous Vehicles in Support of Naval Operations is a forward-looking discussion of the naval operational environment and vision for the Navy and Marine Corps and of naval mission needs and potential applications and limitations of AVs. This report considers the potential of AVs for naval operations, operational needs and technology issues, and opportunities for improved operations.
Autonomous Control Systems and Vehicles
Author: Kenzo Nonami
Publisher: Springer Science & Business Media
ISBN: 4431542760
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
Publisher: Springer Science & Business Media
ISBN: 4431542760
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
The International Conference on Intelligent Unmanned Systems 2011 was organized by the International Society of Intelligent Unmanned Systems and locally by the Center for Bio-Micro Robotics Research at Chiba University, Japan. The event was the 7th conference continuing from previous conferences held in Seoul, Korea (2005, 2006), Bali, Indonesia (2007), Nanjing, China (2008), Jeju, Korea (2009), and Bali, Indonesia (2010). ICIUS 2011 focused on both theory and application, primarily covering the topics of robotics, autonomous vehicles, intelligent unmanned technologies, and biomimetics. We invited seven keynote speakers who dealt with related state-of-the-art technologies including unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs), flapping wings (FWs), unmanned ground vehicles (UGVs), underwater vehicles (UVs), bio-inspired robotics, advanced control, and intelligent systems, among others. This book is a collection of excellent papers that were updated after presentation at ICIUS2011. All papers that form the chapters of this book were reviewed and revised from the perspective of advanced relevant technologies in the field. The aim of this book is to stimulate interactions among researchers active in the areas pertinent to intelligent unmanned systems.
Intelligent Marine and Aerial Vehicles
Author: Er Meng Joo
Publisher:
ISBN: 9781536134469
Category : Automated vehicles
Languages : en
Pages : 0
Book Description
Unmanned marine vehicles (UMVs) is a collective term commonly used to describe autonomous underwater vehicles, remotely operated vehicles, semi-submersibles, and unmanned surface craft. UMVs are heavily used in the military, civilian, and scientific communities for undertaking designated missions whilst either operating autonomously and/or in co-operation with other types of vehicles. Advanced marine vehicles are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. UAVs are a component of an unmanned aircraft system (UAS); these include a UAV, a ground-based controller, and a system of communications between the two. Compared to manned aircraft, UAVs were originally used for missions too "dull, dirty or dangerous" for humans. While they originated mostly in military applications, their use is rapidly expanding to commercial, scientific, recreational, agricultural, and other applications such as policing, peacekeeping and surveillance, product deliveries, aerial photography, agriculture, smuggling, and drone racing. Civilian UAVs now vastly outnumber military UAVs, with estimates of over a million sold by 2015, so they can be seen as an early commercial application of Autonomous Things, to be followed by the autonomous car and home robots. Nowadays, UMVs and UAVs are playing an increasingly important role in both controlling community and engineering applications. For example, UMVs and UAVs provide more efficient ways to execute various challenging tasks. However, these systems are usually featured with dynamics coupling, actuator saturation, underactuated structure, time-varying disturbance, etc., thereby resulting in great challenges and difficulties in system analysis and controller design. Recently, by employing intelligent approaches, advanced control methodologies for unmanned systems have been rapidly developed. Note that the dynamic environment is usually changing and the unmanned systems must adapt themselves accordingly. In this context, on one hand, more efforts should be focused on the methodology of the learning system. For example, fast adaptation and self-organizing capability are essentially required. On the other hand, advanced analysis tools should be deployed to enhance the control performance. Towards this end, human-like intelligence should be integrated tightly with nonlinear design for complex control tasks of autonomous systems. The main objective of this edited book is to address various challenges and issues pertinent to the intelligent control of UMVs and UAVs. (Nova)
Publisher:
ISBN: 9781536134469
Category : Automated vehicles
Languages : en
Pages : 0
Book Description
Unmanned marine vehicles (UMVs) is a collective term commonly used to describe autonomous underwater vehicles, remotely operated vehicles, semi-submersibles, and unmanned surface craft. UMVs are heavily used in the military, civilian, and scientific communities for undertaking designated missions whilst either operating autonomously and/or in co-operation with other types of vehicles. Advanced marine vehicles are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. UAVs are a component of an unmanned aircraft system (UAS); these include a UAV, a ground-based controller, and a system of communications between the two. Compared to manned aircraft, UAVs were originally used for missions too "dull, dirty or dangerous" for humans. While they originated mostly in military applications, their use is rapidly expanding to commercial, scientific, recreational, agricultural, and other applications such as policing, peacekeeping and surveillance, product deliveries, aerial photography, agriculture, smuggling, and drone racing. Civilian UAVs now vastly outnumber military UAVs, with estimates of over a million sold by 2015, so they can be seen as an early commercial application of Autonomous Things, to be followed by the autonomous car and home robots. Nowadays, UMVs and UAVs are playing an increasingly important role in both controlling community and engineering applications. For example, UMVs and UAVs provide more efficient ways to execute various challenging tasks. However, these systems are usually featured with dynamics coupling, actuator saturation, underactuated structure, time-varying disturbance, etc., thereby resulting in great challenges and difficulties in system analysis and controller design. Recently, by employing intelligent approaches, advanced control methodologies for unmanned systems have been rapidly developed. Note that the dynamic environment is usually changing and the unmanned systems must adapt themselves accordingly. In this context, on one hand, more efforts should be focused on the methodology of the learning system. For example, fast adaptation and self-organizing capability are essentially required. On the other hand, advanced analysis tools should be deployed to enhance the control performance. Towards this end, human-like intelligence should be integrated tightly with nonlinear design for complex control tasks of autonomous systems. The main objective of this edited book is to address various challenges and issues pertinent to the intelligent control of UMVs and UAVs. (Nova)
Unmanned Aerial Vehicles
Author: David Glade
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 44
Book Description
The development of uninhabited aerial vehicles (UAVs) could potentially revolutionize how military force is used in the future. While the early operational experiences with UAVs show great promise, their full range of capabilities is largely unknown. However, it is clear that these technologies will enable military forces to use aerospace power more efficiently, which means at lower cost and with less risk to the humans who pilot aircraft. The broader question is the wisdom of using unmanned aerial vehicles for employing lethal force, and in particular which air power missions are best accomplished by uninhabited, piloted, and autonomous vehicles. The corollary is to examine the essential roles of human pilots or operators in aerospace operations in the twenty-first century. Since it is common to draw distinctions between vehicles with an on-board pilot, vehicles with off-board operators, and autonomous vehicles, this study explores the essential role of pilots and contrasts it with the roles of remotely piloted and autonomous vehicles. The assumption is that piloted, remotely piloted, and autonomous vehicles have advantages and disadvantages in military operations, and that these vary in strategic significance for different levels of conflict. Since it is essential for the U.S. defense establishment to consider the strategic and technological implications of these types of aerial vehicles, this study is devoted to addressing the issues raised by the new generation of aerial vehicles.
Publisher:
ISBN:
Category : Drone aircraft
Languages : en
Pages : 44
Book Description
The development of uninhabited aerial vehicles (UAVs) could potentially revolutionize how military force is used in the future. While the early operational experiences with UAVs show great promise, their full range of capabilities is largely unknown. However, it is clear that these technologies will enable military forces to use aerospace power more efficiently, which means at lower cost and with less risk to the humans who pilot aircraft. The broader question is the wisdom of using unmanned aerial vehicles for employing lethal force, and in particular which air power missions are best accomplished by uninhabited, piloted, and autonomous vehicles. The corollary is to examine the essential roles of human pilots or operators in aerospace operations in the twenty-first century. Since it is common to draw distinctions between vehicles with an on-board pilot, vehicles with off-board operators, and autonomous vehicles, this study explores the essential role of pilots and contrasts it with the roles of remotely piloted and autonomous vehicles. The assumption is that piloted, remotely piloted, and autonomous vehicles have advantages and disadvantages in military operations, and that these vary in strategic significance for different levels of conflict. Since it is essential for the U.S. defense establishment to consider the strategic and technological implications of these types of aerial vehicles, this study is devoted to addressing the issues raised by the new generation of aerial vehicles.
Robots, Drones, UAVs and UGVs for Operation and Maintenance
Author: Diego Galar
Publisher: CRC Press
ISBN: 0429839189
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Industrial assets (such as railway lines, roads, pipelines) are usually huge, span long distances, and can be divided into clusters or segments that provide different levels of functionality subject to different loads, degradations and environmental conditions, and their efficient management is necessary. The aim of the book is to give comprehensive understanding about the use of autonomous vehicles (context of robotics) for the utilization of inspection and maintenance activities in industrial asset management in different accessibility and hazard levels. The usability of deploying inspection vehicles in an autonomous manner is explained with the emphasis on integrating the total process. Key Features Aims for solutions for maintenance and inspection problems provided by robotics, drones, unmanned air vehicles and unmanned ground vehicles Discusses integration of autonomous vehicles for inspection and maintenance of industrial assets Covers the industrial approach to inspection needs and presents what is needed from the infrastructure end Presents the requirements for robot designers to design an autonomous inspection and maintenance system Includes practical case studies from industries
Publisher: CRC Press
ISBN: 0429839189
Category : Technology & Engineering
Languages : en
Pages : 409
Book Description
Industrial assets (such as railway lines, roads, pipelines) are usually huge, span long distances, and can be divided into clusters or segments that provide different levels of functionality subject to different loads, degradations and environmental conditions, and their efficient management is necessary. The aim of the book is to give comprehensive understanding about the use of autonomous vehicles (context of robotics) for the utilization of inspection and maintenance activities in industrial asset management in different accessibility and hazard levels. The usability of deploying inspection vehicles in an autonomous manner is explained with the emphasis on integrating the total process. Key Features Aims for solutions for maintenance and inspection problems provided by robotics, drones, unmanned air vehicles and unmanned ground vehicles Discusses integration of autonomous vehicles for inspection and maintenance of industrial assets Covers the industrial approach to inspection needs and presents what is needed from the infrastructure end Presents the requirements for robot designers to design an autonomous inspection and maintenance system Includes practical case studies from industries
Lethal Autonomous Weapons
Author: Jai Galliott
Publisher: Oxford University Press, USA
ISBN: 0197546048
Category : Law
Languages : en
Pages : 321
Book Description
"Because of the increasing use of Unmanned Aerial Vehicles (UAVs, also commonly known as drones) in various military and para-military (i.e., CIA) settings, there has been increasing debate in the international community as to whether it is morally and ethically permissible to allow robots (flying or otherwise) the ability to decide when and where to take human life. In addition, there has been intense debate as to the legal aspects, particularly from a humanitarian law framework. In response to this growing international debate, the United States government released the Department of Defense (DoD) 3000.09 Directive (2011), which sets a policy for if and when autonomous weapons would be used in US military and para-military engagements. This US policy asserts that only "human-supervised autonomous weapon systems may be used to select and engage targets, with the exception of selecting humans as targets, for local defense ...". This statement implies that outside of defensive applications, autonomous weapons will not be allowed to independently select and then fire upon targets without explicit approval from a human supervising the autonomous weapon system. Such a control architecture is known as human supervisory control, where a human remotely supervises an automated system (Sheridan 1992). The defense caveat in this policy is needed because the United States currently uses highly automated systems for defensive purposes, e.g., Counter Rocket, Artillery, and Mortar (C-RAM) systems and Patriot anti-missile missiles. Due to the time-critical nature of such environments (e.g., soldiers sleeping in barracks within easy reach of insurgent shoulder-launched missiles), these automated defensive systems cannot rely upon a human supervisor for permission because of the short engagement times and the inherent human neuromuscular lag which means that even if a person is paying attention, there is approximately a half-second delay in hitting a firing button, which can mean the difference for life and death for the soldiers in the barracks. So as of now, no US UAV (or any robot) will be able to launch any kind of weapon in an offensive environment without human direction and approval. However, the 3000.09 Directive does contain a clause that allows for this possibility in the future. This caveat states that the development of a weapon system that independently decides to launch a weapon is possible but first must be approved by the Under Secretary of Defense for Policy (USD(P)); the Under Secretary of Defense for Acquisition, Technology, and Logistics (USD(AT&L)); and the Chairman of the Joint Chiefs of Staff. Not all stakeholders are happy with this policy that leaves the door open for what used to be considered science fiction. Many opponents of such uses of technologies call for either an outright ban on autonomous weaponized systems, or in some cases, autonomous systems in general (Human Rights Watch 2013, Future of Life Institute 2015, Chairperson of the Informal Meeting of Experts 2016). Such groups take the position that weapons systems should always be under "meaningful human control," but do not give a precise definition of what this means. One issue in this debate that often is overlooked is that autonomy is not a discrete state, rather it is a continuum, and various weapons with different levels of autonomy have been in the US inventory for some time. Because of these ambiguities, it is often hard to draw the line between automated and autonomous systems. Present-day UAVs use the very same guidance, navigation and control technology flown on commercial aircraft. Tomahawk missiles, which have been in the US inventory for more than 30 years, are highly automated weapons with accuracies of less than a meter. These offensive missiles can navigate by themselves with no GPS, thus exhibiting some autonomy by today's definitions. Global Hawk UAVs can find their way home and land on their own without any human intervention in the case of a communication failure. The growth of the civilian UAV market is also a critical consideration in the debate as to whether these technologies should be banned outright. There is a $144.38B industry emerging for the commercial use of drones in agricultural settings, cargo delivery, first response, commercial photography, and the entertainment industry (Adroit Market Research 2019) More than $100 billion has been spent on driverless car development (Eisenstein 2018) in the past 10 years and the autonomy used in driverless cars mirrors that inside autonomous weapons. So, it is an important distinction that UAVs are simply the platform for weapon delivery (autonomous or conventional), and that autonomous systems have many peaceful and commercial uses independent of military applications"--
Publisher: Oxford University Press, USA
ISBN: 0197546048
Category : Law
Languages : en
Pages : 321
Book Description
"Because of the increasing use of Unmanned Aerial Vehicles (UAVs, also commonly known as drones) in various military and para-military (i.e., CIA) settings, there has been increasing debate in the international community as to whether it is morally and ethically permissible to allow robots (flying or otherwise) the ability to decide when and where to take human life. In addition, there has been intense debate as to the legal aspects, particularly from a humanitarian law framework. In response to this growing international debate, the United States government released the Department of Defense (DoD) 3000.09 Directive (2011), which sets a policy for if and when autonomous weapons would be used in US military and para-military engagements. This US policy asserts that only "human-supervised autonomous weapon systems may be used to select and engage targets, with the exception of selecting humans as targets, for local defense ...". This statement implies that outside of defensive applications, autonomous weapons will not be allowed to independently select and then fire upon targets without explicit approval from a human supervising the autonomous weapon system. Such a control architecture is known as human supervisory control, where a human remotely supervises an automated system (Sheridan 1992). The defense caveat in this policy is needed because the United States currently uses highly automated systems for defensive purposes, e.g., Counter Rocket, Artillery, and Mortar (C-RAM) systems and Patriot anti-missile missiles. Due to the time-critical nature of such environments (e.g., soldiers sleeping in barracks within easy reach of insurgent shoulder-launched missiles), these automated defensive systems cannot rely upon a human supervisor for permission because of the short engagement times and the inherent human neuromuscular lag which means that even if a person is paying attention, there is approximately a half-second delay in hitting a firing button, which can mean the difference for life and death for the soldiers in the barracks. So as of now, no US UAV (or any robot) will be able to launch any kind of weapon in an offensive environment without human direction and approval. However, the 3000.09 Directive does contain a clause that allows for this possibility in the future. This caveat states that the development of a weapon system that independently decides to launch a weapon is possible but first must be approved by the Under Secretary of Defense for Policy (USD(P)); the Under Secretary of Defense for Acquisition, Technology, and Logistics (USD(AT&L)); and the Chairman of the Joint Chiefs of Staff. Not all stakeholders are happy with this policy that leaves the door open for what used to be considered science fiction. Many opponents of such uses of technologies call for either an outright ban on autonomous weaponized systems, or in some cases, autonomous systems in general (Human Rights Watch 2013, Future of Life Institute 2015, Chairperson of the Informal Meeting of Experts 2016). Such groups take the position that weapons systems should always be under "meaningful human control," but do not give a precise definition of what this means. One issue in this debate that often is overlooked is that autonomy is not a discrete state, rather it is a continuum, and various weapons with different levels of autonomy have been in the US inventory for some time. Because of these ambiguities, it is often hard to draw the line between automated and autonomous systems. Present-day UAVs use the very same guidance, navigation and control technology flown on commercial aircraft. Tomahawk missiles, which have been in the US inventory for more than 30 years, are highly automated weapons with accuracies of less than a meter. These offensive missiles can navigate by themselves with no GPS, thus exhibiting some autonomy by today's definitions. Global Hawk UAVs can find their way home and land on their own without any human intervention in the case of a communication failure. The growth of the civilian UAV market is also a critical consideration in the debate as to whether these technologies should be banned outright. There is a $144.38B industry emerging for the commercial use of drones in agricultural settings, cargo delivery, first response, commercial photography, and the entertainment industry (Adroit Market Research 2019) More than $100 billion has been spent on driverless car development (Eisenstein 2018) in the past 10 years and the autonomy used in driverless cars mirrors that inside autonomous weapons. So, it is an important distinction that UAVs are simply the platform for weapon delivery (autonomous or conventional), and that autonomous systems have many peaceful and commercial uses independent of military applications"--
Military Robots and Drones
Author: Paul J. Springer
Publisher: Bloomsbury Publishing USA
ISBN:
Category : History
Languages : en
Pages : 343
Book Description
This book provides an insightful introduction to the most important field of military innovation for the 21st century—robotic and drone weaponry. For centuries, warring nations have sought to lower the risk to highly vulnerable humans on the battlefield, typically by providing protective armor, making soldiers' positions more difficult to detect, or by striking from locations safe from retaliation. Autonomous weaponry has now reached the point where robotic systems can perform some key tasks that previously required direct human involvement. Military Robots and Drones: A Reference Handbook introduces the lay person to a highly specialized topic, providing the foundation necessary for further study in this field. Appropriate for high school and college-level students, as well as general readers with an interest in the topic, the author explains the many military applications of robotics as well as current limitations and disadvantages. The book also provides a general history of robotic warfare; examines key individuals, agencies, documents, and models; discusses controversies within the field of robotic and drone warfare, such as ethical considerations; and explains how increased reliance on robotics has affected the structure and strategy of the military.
Publisher: Bloomsbury Publishing USA
ISBN:
Category : History
Languages : en
Pages : 343
Book Description
This book provides an insightful introduction to the most important field of military innovation for the 21st century—robotic and drone weaponry. For centuries, warring nations have sought to lower the risk to highly vulnerable humans on the battlefield, typically by providing protective armor, making soldiers' positions more difficult to detect, or by striking from locations safe from retaliation. Autonomous weaponry has now reached the point where robotic systems can perform some key tasks that previously required direct human involvement. Military Robots and Drones: A Reference Handbook introduces the lay person to a highly specialized topic, providing the foundation necessary for further study in this field. Appropriate for high school and college-level students, as well as general readers with an interest in the topic, the author explains the many military applications of robotics as well as current limitations and disadvantages. The book also provides a general history of robotic warfare; examines key individuals, agencies, documents, and models; discusses controversies within the field of robotic and drone warfare, such as ethical considerations; and explains how increased reliance on robotics has affected the structure and strategy of the military.
Unmanned aircraft systems new DOD programs can learn from past efforts to craft better and less risky acquisition strategies : report to the Committee on Armed Services, U.S. Senate.
Author:
Publisher: DIANE Publishing
ISBN: 1428930493
Category :
Languages : en
Pages : 41
Book Description
Publisher: DIANE Publishing
ISBN: 1428930493
Category :
Languages : en
Pages : 41
Book Description
Intelligent Autonomy of UAVs
Author: Yasmina Bestaoui Sebbane
Publisher: CRC Press
ISBN: 9781138568495
Category : Automatic pilot (Airplanes)
Languages : en
Pages : 404
Book Description
"A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc."
Publisher: CRC Press
ISBN: 9781138568495
Category : Automatic pilot (Airplanes)
Languages : en
Pages : 404
Book Description
"A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc."