The Quantization of Gravity

The Quantization of Gravity PDF Author: Claus Gerhardt
Publisher: Springer
ISBN: 3319773712
Category : Science
Languages : en
Pages : 200

Get Book

Book Description
​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.

The Quantization of Gravity

The Quantization of Gravity PDF Author: Claus Gerhardt
Publisher: Springer
ISBN: 3319773712
Category : Science
Languages : en
Pages : 200

Get Book

Book Description
​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.

The Quantization of Gravity

The Quantization of Gravity PDF Author: Claus Gerhardt
Publisher: Springer
ISBN: 9783030084417
Category : Science
Languages : en
Pages : 0

Get Book

Book Description
​A unified quantum theory incorporating the four fundamental forces of nature is one of the major open problems in physics. The Standard Model combines electro-magnetism, the strong force and the weak force, but ignores gravity. The quantization of gravity is therefore a necessary first step to achieve a unified quantum theory. In this monograph a canonical quantization of gravity has been achieved by quantizing a geometric evolution equation resulting in a gravitational wave equation in a globally hyperbolic spacetime. Applying the technique of separation of variables we obtain eigenvalue problems for temporal and spatial self-adjoint operators where the temporal operator has a pure point spectrum with eigenvalues $\lambda_i$ and related eigenfunctions, while, for the spatial operator, it is possible to find corresponding eigendistributions for each of the eigenvalues $\lambda_i$, if the Cauchy hypersurface is asymptotically Euclidean or if the quantized spacetime is a black hole with a negative cosmological constant. The hyperbolic equation then has a sequence of smooth solutions which are products of temporal eigenfunctions and spatial eigendistributions. Due to this "spectral resolution" of the wave equation quantum statistics can also be applied to the quantized systems. These quantum statistical results could help to explain the nature of dark matter and dark energy.

Quantum Gravity in 2+1 Dimensions

Quantum Gravity in 2+1 Dimensions PDF Author: Steven Carlip
Publisher: Cambridge University Press
ISBN: 9780521545884
Category : Science
Languages : en
Pages : 296

Get Book

Book Description
The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.

The Meaning of Quantum Gravity

The Meaning of Quantum Gravity PDF Author: Horst-Heino Borzeszkowski
Publisher: Springer Science & Business Media
ISBN: 9400938934
Category : Science
Languages : en
Pages : 140

Get Book

Book Description
In discussing the question of whether General Relativity Theory really needs to be quantized, a simply negative answer cannot be accepted, of course. Such an answer is not satisfying because, first, Einstein's gravitational equations connect gravity and non-gravitational matter and because, second, it can be taken for granted that non-gravitational matter has an atomic or quantum structure such that its energy-momentum tensor standing on the right-hand side of Einstein's equations is formed out of quantum operators. These two facts make it impossible to read the left-hand side of Einstein's equations as an ordinary classical function. This does not necessarily mean, however, that we must draw the conclusion that General Relativity Theory, similar to electrodynamics, could or should be quantized in a rigorous manner and that this quantization has similar consequences to quantum electrodynamics. In other words, when for reasons of consistency quantization is tried, then one has to ask whether and where the quantization procedure has a physical meaning, i.e., whether there exist measurable effects of quantum gravity. IQ accordance with these questions, we are mainly dealing with the discus sion of the principles of quantized General Relativity Theory and with the estimation of quantum effects including the question of their measurability. This analysis proves that it is impossible to distinguish between classical and quantum General Relativity Theory for the extreme case of Planck's orders of magnitude. In other words, there does not exist a physically meaningful rigorous quantization conception for Einstein's theory.

Quantum Gravity

Quantum Gravity PDF Author: Claus Kiefer
Publisher: Oxford University Press
ISBN: 0199585202
Category : Mathematics
Languages : en
Pages : 406

Get Book

Book Description
Quantum theory and Einstein's theory of relativity are at the centre of modern theoretical physics, yet, the consistent unification of both theories is still elusive. This book offers an up-to-date introduction into the attempts to construct a unified theory of "quantum gravity".

A First Course in Loop Quantum Gravity

A First Course in Loop Quantum Gravity PDF Author: Rodolfo Gambini
Publisher: OUP Oxford
ISBN: 0191003239
Category : Science
Languages : en
Pages : 192

Get Book

Book Description
This book provides an accessible introduction to loop quantum gravity and some of its applications, at a level suitable for undergraduate students and others with only a minimal knowledge of college level physics. In particular it is not assumed that the reader is familiar with general relativity and only minimally familiar with quantum mechanics and Hamiltonian mechanics. Most chapters end with problems that elaborate on the text, and aid learning. Applications such as loop quantum cosmology, black hole entropy and spin foams are briefly covered. The text is ideally suited for an undergraduate course in the senior year of a physics major. It can also be used to introduce undergraduates to general relativity and quantum field theory as part of a 'special topics' type of course.

Experimental Search for Quantum Gravity

Experimental Search for Quantum Gravity PDF Author: Sabine Hossenfelder
Publisher: Springer
ISBN: 3319645374
Category : Science
Languages : en
Pages : 120

Get Book

Book Description
This book summarizes recent developments in the research area of quantum gravity phenomenology. A series of short and nontechnical essays lays out the prospects of various experimental possibilities and their current status. Finding observational evidence for the quantization of space-time was long thought impossible. In the last decade however, new experimental design and technological advances have changed the research landscape and opened new perspectives on quantum gravity. Formerly dominated by purely theoretical constructions, quantum gravity now has a lively phenomenology to offer. From high precision measurements using macroscopic quantum oscillators to new analysis methods of the cosmic microwave background, no stone is being left unturned in the experimental search for quantum gravity. This book sheds new light on the connection of astroparticle physics with the quantum gravity problem. Gravitational waves and their detection are covered. It illustrates findings from the interconnection between general relativity, black holes and Planck stars. Finally, the return on investment in quantum-gravitation research is illuminated. The book is intended for graduate students and researchers entering the field.

Introduction to Quantum Effects in Gravity

Introduction to Quantum Effects in Gravity PDF Author: Viatcheslav Mukhanov
Publisher: Cambridge University Press
ISBN: 9780521868341
Category : Mathematics
Languages : en
Pages : 298

Get Book

Book Description
Publisher description

Relativity, Astrophysics and Cosmology

Relativity, Astrophysics and Cosmology PDF Author: W. Israel
Publisher: Springer Science & Business Media
ISBN: 9401026394
Category : Science
Languages : en
Pages : 342

Get Book

Book Description
The 1972 Banff lectures attempted a systematic exposition of the ideas underlying recent developments in general relativity and its astronomical applications at a level accessible and useful to graduate students having some previous acquaintance with the subject. To our regret, it was not possible to include any printed record of Peebles' beautiful lectures on observational cosmology or of the many stimulating seminars on special topics contributed by the participants. What remains is nevertheless a reason ably self-contained and compact introduction to Einstein's theory in its modern in carnation, and we hope it will be found useful by the many physicists, astronomers, and mathematicians who wish to update and deepen their understanding of the theory. On behalf of the organizing committee, I should like to express appreciation to a number of people whose help was crucial to the success of the enterprise: to Jan van Kranendonk, who initiated the idea of a Banff summer school on general relativity; to him and to David Rowe and Don Betts for inspiration and moral support; to our indefatigable secretaries Olwyn Buckland and Leslie Hughes; and to Garry Nash, Richard Sigal, Tim Spanos, and Gordon Wilson who helped in a variety of ways to keep the wheels running. How much we owe to the splendid cooperative effort of the lecturers will be clear to any reader of the following pages.

Quantum Field Theory and Gravity

Quantum Field Theory and Gravity PDF Author: Felix Finster
Publisher: Springer Science & Business Media
ISBN: 3034800436
Category : Mathematics
Languages : en
Pages : 389

Get Book

Book Description
One of the most challenging problems of contemporary theoretical physics is the mathematically rigorous construction of a theory which describes gravitation and the other fundamental physical interactions within a common framework. The physical ideas which grew from attempts to develop such a theory require highly advanced mathematical methods and radically new physical concepts. This book presents different approaches to a rigorous unified description of quantum fields and gravity. It contains a carefully selected cross-section of lively discussions which took place in autumn 2010 at the fifth conference "Quantum field theory and gravity - Conceptual and mathematical advances in the search for a unified framework" in Regensburg, Germany. In the tradition of the other proceedings covering this series of conferences, a special feature of this book is the exposition of a wide variety of approaches, with the intention to facilitate a comparison. The book is mainly addressed to mathematicians and physicists who are interested in fundamental questions of mathematical physics. It allows the reader to obtain a broad and up-to-date overview of a fascinating active research area.