Author: Ernst Mach
Publisher: Courier Corporation
ISBN: 048617347X
Category : Science
Languages : en
Pages : 372
Book Description
The famous physicist explains early experiments, studies on polarization, the mathematical representation of the properties of light, and refinements and advances in theory. 279 figures. 10 portraits. 1926 edition.
The Principles of Physical Optics
Author: Ernst Mach
Publisher: Courier Corporation
ISBN: 048617347X
Category : Science
Languages : en
Pages : 372
Book Description
The famous physicist explains early experiments, studies on polarization, the mathematical representation of the properties of light, and refinements and advances in theory. 279 figures. 10 portraits. 1926 edition.
Publisher: Courier Corporation
ISBN: 048617347X
Category : Science
Languages : en
Pages : 372
Book Description
The famous physicist explains early experiments, studies on polarization, the mathematical representation of the properties of light, and refinements and advances in theory. 279 figures. 10 portraits. 1926 edition.
Principles of Optics
Author: Max Born
Publisher: CUP Archive
ISBN: 9780521784498
Category : Science
Languages : en
Pages : 996
Book Description
Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.
Publisher: CUP Archive
ISBN: 9780521784498
Category : Science
Languages : en
Pages : 996
Book Description
Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.
A History of the Ideas of Theoretical Physics
Author: S. D'Agostino
Publisher: Springer Science & Business Media
ISBN: 9401090343
Category : Science
Languages : en
Pages : 406
Book Description
This book presents a perspective on the history of theoretical physics over the past two hundreds years. It comprises essays on the history of pre-Maxwellian electrodynamics, of Maxwell's and Hertz's field theories, and of the present century's relativity and quantum physics. A common thread across the essays is the search for and the exploration of themes that influenced significant con ceptual changes in the great movement of ideas and experiments which heralded the emergence of theoretical physics (hereafter: TP). The fun. damental change involved the recognition of the scien tific validity of theoretical physics. In the second half of the nine teenth century, it was not easy for many physicists to understand the nature and scope of theoretical physics and of its adept, the theoreti cal physicist. A physicist like Ludwig Boltzmann, one of the eminent contributors to the new discipline, confessed in 1895 that, "even the formulation of this concept [of a theoretical physicist] is not entirely without difficulty". 1 Although science had always been divided into theory and experiment, it was only in physics that theoretical work developed into a major research and teaching specialty in its own right. 2 It is true that theoretical physics was mainly a creation of tum of-the century German physics, where it received full institutional recognition, but it is also undeniable that outstanding physicists in other European countries, namely, Ampere, Fourier, and Maxwell, also had an important part in its creation.
Publisher: Springer Science & Business Media
ISBN: 9401090343
Category : Science
Languages : en
Pages : 406
Book Description
This book presents a perspective on the history of theoretical physics over the past two hundreds years. It comprises essays on the history of pre-Maxwellian electrodynamics, of Maxwell's and Hertz's field theories, and of the present century's relativity and quantum physics. A common thread across the essays is the search for and the exploration of themes that influenced significant con ceptual changes in the great movement of ideas and experiments which heralded the emergence of theoretical physics (hereafter: TP). The fun. damental change involved the recognition of the scien tific validity of theoretical physics. In the second half of the nine teenth century, it was not easy for many physicists to understand the nature and scope of theoretical physics and of its adept, the theoreti cal physicist. A physicist like Ludwig Boltzmann, one of the eminent contributors to the new discipline, confessed in 1895 that, "even the formulation of this concept [of a theoretical physicist] is not entirely without difficulty". 1 Although science had always been divided into theory and experiment, it was only in physics that theoretical work developed into a major research and teaching specialty in its own right. 2 It is true that theoretical physics was mainly a creation of tum of-the century German physics, where it received full institutional recognition, but it is also undeniable that outstanding physicists in other European countries, namely, Ampere, Fourier, and Maxwell, also had an important part in its creation.
International Handbook of Research in History, Philosophy and Science Teaching
Author: Michael R. Matthews
Publisher: Springer
ISBN: 9400776543
Category : Education
Languages : en
Pages : 2487
Book Description
This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the field, it lays down a much-needed marker of progress to date and provides a platform for informed and coherent future analysis and research of the subject. The publication comes at a time of heightened worldwide concern over the standard of science and mathematics education, attended by fierce debate over how best to reform curricula and enliven student engagement in the subjects. There is a growing recognition among educators and policy makers that the learning of science must dovetail with learning about science; this handbook is uniquely positioned as a locus for the discussion. The handbook features sections on pedagogical, theoretical, national, and biographical research, setting the literature of each tradition in its historical context. It reminds readers at a crucial juncture that there has been a long and rich tradition of historical and philosophical engagements with science and mathematics teaching, and that lessons can be learnt from these engagements for the resolution of current theoretical, curricular and pedagogical questions that face teachers and administrators. Science educators will be grateful for this unique, encyclopaedic handbook, Gerald Holton, Physics Department, Harvard University This handbook gathers the fruits of over thirty years’ research by a growing international and cosmopolitan community Fabio Bevilacqua, Physics Department, University of Pavia
Publisher: Springer
ISBN: 9400776543
Category : Education
Languages : en
Pages : 2487
Book Description
This inaugural handbook documents the distinctive research field that utilizes history and philosophy in investigation of theoretical, curricular and pedagogical issues in the teaching of science and mathematics. It is contributed to by 130 researchers from 30 countries; it provides a logically structured, fully referenced guide to the ways in which science and mathematics education is, informed by the history and philosophy of these disciplines, as well as by the philosophy of education more generally. The first handbook to cover the field, it lays down a much-needed marker of progress to date and provides a platform for informed and coherent future analysis and research of the subject. The publication comes at a time of heightened worldwide concern over the standard of science and mathematics education, attended by fierce debate over how best to reform curricula and enliven student engagement in the subjects. There is a growing recognition among educators and policy makers that the learning of science must dovetail with learning about science; this handbook is uniquely positioned as a locus for the discussion. The handbook features sections on pedagogical, theoretical, national, and biographical research, setting the literature of each tradition in its historical context. It reminds readers at a crucial juncture that there has been a long and rich tradition of historical and philosophical engagements with science and mathematics teaching, and that lessons can be learnt from these engagements for the resolution of current theoretical, curricular and pedagogical questions that face teachers and administrators. Science educators will be grateful for this unique, encyclopaedic handbook, Gerald Holton, Physics Department, Harvard University This handbook gathers the fruits of over thirty years’ research by a growing international and cosmopolitan community Fabio Bevilacqua, Physics Department, University of Pavia
On the Riddle of Life
Author: Bohang Chen
Publisher: Springer Nature
ISBN: 3031706900
Category :
Languages : en
Pages : 308
Book Description
Publisher: Springer Nature
ISBN: 3031706900
Category :
Languages : en
Pages : 308
Book Description
History of the Principle of Interference of Light
Author: N. Kipnis
Publisher: Birkhäuser
ISBN: 3034886527
Category : Science
Languages : en
Pages : 268
Book Description
The controversy between the wave theory and the emission theory of light early in the nineteenth century has been a subject of numerous studies. Yet many is sues remain unclear, in particular, the reasons for rejecting Young's theory of light. It appears that further progress in the field requires a better grasp of the overall situation in optics and related subjects at the time and a more thorough study of every factor suggested to be of importance for the dispute. This book is intended to be a step in this direction. It examines the impact of the concept of interference of light on the development of the early nineteenth century optics in general, and the theory of light, in particular. This is not a his tory of the wave theory of light, nor is it a history of the debate on the nature of light in general: it covers only that part of the controversy which involved the concept of interference. Although the book deals with a number of scientists, scientific institutions, and journals, its main character is a scientific concept, the principle of interference. While discussing the reasons for accepting or rejecting this concept I have primarily focused on scientific factors, although in some cases the human factor is examined as well. The book is a revised Ph. D. dissertation (University of Minnesota, 1984) writ ten under Alan E. Shapiro.
Publisher: Birkhäuser
ISBN: 3034886527
Category : Science
Languages : en
Pages : 268
Book Description
The controversy between the wave theory and the emission theory of light early in the nineteenth century has been a subject of numerous studies. Yet many is sues remain unclear, in particular, the reasons for rejecting Young's theory of light. It appears that further progress in the field requires a better grasp of the overall situation in optics and related subjects at the time and a more thorough study of every factor suggested to be of importance for the dispute. This book is intended to be a step in this direction. It examines the impact of the concept of interference of light on the development of the early nineteenth century optics in general, and the theory of light, in particular. This is not a his tory of the wave theory of light, nor is it a history of the debate on the nature of light in general: it covers only that part of the controversy which involved the concept of interference. Although the book deals with a number of scientists, scientific institutions, and journals, its main character is a scientific concept, the principle of interference. While discussing the reasons for accepting or rejecting this concept I have primarily focused on scientific factors, although in some cases the human factor is examined as well. The book is a revised Ph. D. dissertation (University of Minnesota, 1984) writ ten under Alan E. Shapiro.
Instrumental Traditions and Theories of Light
Author: Xiang Chen
Publisher: Springer Science & Business Media
ISBN: 9401141959
Category : Science
Languages : en
Pages : 230
Book Description
An analysis of the optical revolution in the context of early 19th century Britain. Far from merely involving the replacement of one optical theory by another, the revolution also involved substantial changes in instruments and the practices that surrounded them. People's judgements about classification, explanation and evaluation were affected by the way they used such optical instruments as spectroscopes, telescopes, polarisers, photometers, gratings, prisms and apertures. There were two instrumental traditions in this historical period, each of which nurtured a body of practice that exemplified how optical instruments should be operated, and especially how the eye should be used. These traditions functioned just like paradigms, shaping perspectives and even world views. Readership: Scholars and graduate students in the history of science, history of instrument, philosophy of science and science studies. Can also be used as a textbook in graduate courses on 19th century physics.
Publisher: Springer Science & Business Media
ISBN: 9401141959
Category : Science
Languages : en
Pages : 230
Book Description
An analysis of the optical revolution in the context of early 19th century Britain. Far from merely involving the replacement of one optical theory by another, the revolution also involved substantial changes in instruments and the practices that surrounded them. People's judgements about classification, explanation and evaluation were affected by the way they used such optical instruments as spectroscopes, telescopes, polarisers, photometers, gratings, prisms and apertures. There were two instrumental traditions in this historical period, each of which nurtured a body of practice that exemplified how optical instruments should be operated, and especially how the eye should be used. These traditions functioned just like paradigms, shaping perspectives and even world views. Readership: Scholars and graduate students in the history of science, history of instrument, philosophy of science and science studies. Can also be used as a textbook in graduate courses on 19th century physics.
The Principles of Physical Optics
Author: Ernst Mach
Publisher:
ISBN:
Category : Light
Languages : en
Pages : 368
Book Description
Publisher:
ISBN:
Category : Light
Languages : en
Pages : 368
Book Description
Twentieth-Century Philosophy of Science: A History (Third Edition)
Author: Thomas J. Hickey
Publisher: Thomas J. Hickey
ISBN: 0692650733
Category : Philosophy
Languages : en
Pages : 827
Book Description
History of twentieth-century philosophy of science opens with an introduction to contemporary philosophy of science as of the beginning of the twenty-first century, and describes the new specialty of computational philosophy of science. Seven chapters describing the philosophies of several major philosophers of science follow this introductory chapter. These major philosophers include Ernst Mach and Pierre Duhem, Rudolf Carnap and Willard Van Quine, Werner Heisenberg, Karl Popper, Thomas Kuhn and Paul Feyerabend, Norwood Russell Hanson, and Paul Thagard and Herbert Simon. The book concludes with a large bibliography.
Publisher: Thomas J. Hickey
ISBN: 0692650733
Category : Philosophy
Languages : en
Pages : 827
Book Description
History of twentieth-century philosophy of science opens with an introduction to contemporary philosophy of science as of the beginning of the twenty-first century, and describes the new specialty of computational philosophy of science. Seven chapters describing the philosophies of several major philosophers of science follow this introductory chapter. These major philosophers include Ernst Mach and Pierre Duhem, Rudolf Carnap and Willard Van Quine, Werner Heisenberg, Karl Popper, Thomas Kuhn and Paul Feyerabend, Norwood Russell Hanson, and Paul Thagard and Herbert Simon. The book concludes with a large bibliography.
Science Education and Culture
Author: Fabio Bevilacqua
Publisher: Springer Science & Business Media
ISBN: 9401007306
Category : Science
Languages : en
Pages : 364
Book Description
This anthology contains selected papers from the 'Science as Culture' conference held at Lake Como, and Pavia University Italy, 15-19 September 1999. The conference, attended by about 220 individuals from thirty countries, was a joint venture of the International History, Philosophy and Science Teaching Group (its fifth conference) and the History of Physics and Physics Teaching Division of the European Physical Society (its eighth conference). The magnificient Villa Olmo, on the lakeshore, provided a memorable location for the presentors of the 160 papers and the audience that discussed them. The conference was part of local celebrations of the bicentenary of Alessandro Volta's creation of the battery in 1799. Volta was born in Como in 1745, and for forty years from 1778 he was professor of experimental physics at Pavia University. The conference was fortunate to have had the generous financial support of the Italian government's Volta Bicentenary Fund, Lombardy region, Pavia University, Italian Research Council, and Kluwer Academic Publishers. The papers included here, have or will be, published in the journal Science & Education, the inaugural volume (1992) of which was a landmark in the history of science education publication, because it was the first journal in the field devoted to contributions from historical, philosophical and sociological scholarship. Clearly these 'foundational' disciplines inform numerous theoretical, curricular and pedagogical debates in science education. Contemporary Concerns The reseach promoted by the International and European Groups, and by the journal, is central to science education programmes in most areas of the world.
Publisher: Springer Science & Business Media
ISBN: 9401007306
Category : Science
Languages : en
Pages : 364
Book Description
This anthology contains selected papers from the 'Science as Culture' conference held at Lake Como, and Pavia University Italy, 15-19 September 1999. The conference, attended by about 220 individuals from thirty countries, was a joint venture of the International History, Philosophy and Science Teaching Group (its fifth conference) and the History of Physics and Physics Teaching Division of the European Physical Society (its eighth conference). The magnificient Villa Olmo, on the lakeshore, provided a memorable location for the presentors of the 160 papers and the audience that discussed them. The conference was part of local celebrations of the bicentenary of Alessandro Volta's creation of the battery in 1799. Volta was born in Como in 1745, and for forty years from 1778 he was professor of experimental physics at Pavia University. The conference was fortunate to have had the generous financial support of the Italian government's Volta Bicentenary Fund, Lombardy region, Pavia University, Italian Research Council, and Kluwer Academic Publishers. The papers included here, have or will be, published in the journal Science & Education, the inaugural volume (1992) of which was a landmark in the history of science education publication, because it was the first journal in the field devoted to contributions from historical, philosophical and sociological scholarship. Clearly these 'foundational' disciplines inform numerous theoretical, curricular and pedagogical debates in science education. Contemporary Concerns The reseach promoted by the International and European Groups, and by the journal, is central to science education programmes in most areas of the world.