Author: Frederic R. Morgenthaler
Publisher: John Wiley & Sons
ISBN: 1118118413
Category : Technology & Engineering
Languages : en
Pages : 678
Book Description
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems. The text is divided into four parts: Part I: Basic Electromagnetic Theory includes Maxwell's equations, quasistatics, power and energy, stress and momentum, and electromagnetic wave theorems and principles Part II: Four-Dimensional Electromagnetism includes four-dimensional vectors and tensors and energy-momentum tensors Part III: Electromagnetic Examples includes statics and quasistatics, accelerating charges, plane waves, transmission lines, waveguides, antennas and diffraction, and ferrites Part IV: Backmatter includes a summary, appendices, and references Designed to accommodate a broad range of interests and backgrounds, the text's companion DVD enables readers to reconfigure the material as an introductory-, intermediate-, or advanced-level text. Moreover, the text and its DVD offer a broad range of features that make it possible for readers to quickly grasp new concepts and apply them in practice: Practice problems provide the opportunity to solve real-world problems using electromagnetic theory Forty animations illustrate electric and magnetic field transients Line drawings and computer-generated mathematical figures clarify complex concepts and procedures. Maxima, a powerful symbolic mathematics program, helps readers explore four-dimensional electromagnetic theory as well as perform numerical and graphical analyses Adaptable to multiple levels, this text can be used for both undergraduate and graduate coursework. It is also recommended as a reference for researchers in such fields as electrical engineering, laser physics, materials science, and biomedical engineering.
The Power and Beauty of Electromagnetic Fields
Author: Frederic R. Morgenthaler
Publisher: John Wiley & Sons
ISBN: 1118118413
Category : Technology & Engineering
Languages : en
Pages : 678
Book Description
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems. The text is divided into four parts: Part I: Basic Electromagnetic Theory includes Maxwell's equations, quasistatics, power and energy, stress and momentum, and electromagnetic wave theorems and principles Part II: Four-Dimensional Electromagnetism includes four-dimensional vectors and tensors and energy-momentum tensors Part III: Electromagnetic Examples includes statics and quasistatics, accelerating charges, plane waves, transmission lines, waveguides, antennas and diffraction, and ferrites Part IV: Backmatter includes a summary, appendices, and references Designed to accommodate a broad range of interests and backgrounds, the text's companion DVD enables readers to reconfigure the material as an introductory-, intermediate-, or advanced-level text. Moreover, the text and its DVD offer a broad range of features that make it possible for readers to quickly grasp new concepts and apply them in practice: Practice problems provide the opportunity to solve real-world problems using electromagnetic theory Forty animations illustrate electric and magnetic field transients Line drawings and computer-generated mathematical figures clarify complex concepts and procedures. Maxima, a powerful symbolic mathematics program, helps readers explore four-dimensional electromagnetic theory as well as perform numerical and graphical analyses Adaptable to multiple levels, this text can be used for both undergraduate and graduate coursework. It is also recommended as a reference for researchers in such fields as electrical engineering, laser physics, materials science, and biomedical engineering.
Publisher: John Wiley & Sons
ISBN: 1118118413
Category : Technology & Engineering
Languages : en
Pages : 678
Book Description
Unique, multi-level textbook is adaptable to introductory, intermediate, and advanced levels This revolutionary textbook takes a unique approach to electromagnetic theory, comparing both conventional and modern theories. It explores both the Maxwell-Poynting representation as well as the Alternate representation, which the author demonstrates is generally simpler and more suitable for analyzing modern electromagnetic environments. Throughout the text, students and researchers have the opportunity to examine both of these theories and discover how each one can be applied to solve problems. The text is divided into four parts: Part I: Basic Electromagnetic Theory includes Maxwell's equations, quasistatics, power and energy, stress and momentum, and electromagnetic wave theorems and principles Part II: Four-Dimensional Electromagnetism includes four-dimensional vectors and tensors and energy-momentum tensors Part III: Electromagnetic Examples includes statics and quasistatics, accelerating charges, plane waves, transmission lines, waveguides, antennas and diffraction, and ferrites Part IV: Backmatter includes a summary, appendices, and references Designed to accommodate a broad range of interests and backgrounds, the text's companion DVD enables readers to reconfigure the material as an introductory-, intermediate-, or advanced-level text. Moreover, the text and its DVD offer a broad range of features that make it possible for readers to quickly grasp new concepts and apply them in practice: Practice problems provide the opportunity to solve real-world problems using electromagnetic theory Forty animations illustrate electric and magnetic field transients Line drawings and computer-generated mathematical figures clarify complex concepts and procedures. Maxima, a powerful symbolic mathematics program, helps readers explore four-dimensional electromagnetic theory as well as perform numerical and graphical analyses Adaptable to multiple levels, this text can be used for both undergraduate and graduate coursework. It is also recommended as a reference for researchers in such fields as electrical engineering, laser physics, materials science, and biomedical engineering.
EMF Book
Author: Mark A. Pinsky
Publisher: Hachette UK
ISBN: 0446568759
Category : Health & Fitness
Languages : en
Pages : 256
Book Description
This book gives facts about the dangers, revealing that most of us are exposed to radiation and electromagnetic fields everyday. Electromagnetic fields and radiation are everywhere - near power lines, computers, radio and television signals, microwave ovens, toasters, alarm clocks and everyday electrical appliances. The media are warning of the possible hazards of EMFs and EMR and recent studies suggest that they cause leukaemia in children and breast and brain cancer in adults. It advises which levels to worry about, and how to minimize the risks. It is also a sourcebook for citizens seeking action from utility companies, employers, manufacturers and governmental agencies.
Publisher: Hachette UK
ISBN: 0446568759
Category : Health & Fitness
Languages : en
Pages : 256
Book Description
This book gives facts about the dangers, revealing that most of us are exposed to radiation and electromagnetic fields everyday. Electromagnetic fields and radiation are everywhere - near power lines, computers, radio and television signals, microwave ovens, toasters, alarm clocks and everyday electrical appliances. The media are warning of the possible hazards of EMFs and EMR and recent studies suggest that they cause leukaemia in children and breast and brain cancer in adults. It advises which levels to worry about, and how to minimize the risks. It is also a sourcebook for citizens seeking action from utility companies, employers, manufacturers and governmental agencies.
Theory and Computation of Electromagnetic Fields
Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744
Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744
Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.
Electromagnetic Fields
Author: J. Van Bladel
Publisher: CRC Press
ISBN: 9780891168195
Category : Science
Languages : en
Pages : 556
Book Description
Publisher: CRC Press
ISBN: 9780891168195
Category : Science
Languages : en
Pages : 556
Book Description
Maxwell on the Electromagnetic Field
Author: Thomas K. Simpson
Publisher: Rutgers University Press
ISBN: 9780813523637
Category : Biography & Autobiography
Languages : en
Pages : 468
Book Description
Reproduces major portions of Maxwell's classic papers on key concepts in modern physics, written between 1855 and 1864, along with commentaries, notes, and bandw diagrams. Includes a detailed biographical introduction exploring the personal, historical, and scientific context of his work. Designed to be accessible to readers with limited knowledge of math or physics, as well as scientists and historians of science. Annotation copyright by Book News, Inc., Portland, OR
Publisher: Rutgers University Press
ISBN: 9780813523637
Category : Biography & Autobiography
Languages : en
Pages : 468
Book Description
Reproduces major portions of Maxwell's classic papers on key concepts in modern physics, written between 1855 and 1864, along with commentaries, notes, and bandw diagrams. Includes a detailed biographical introduction exploring the personal, historical, and scientific context of his work. Designed to be accessible to readers with limited knowledge of math or physics, as well as scientists and historians of science. Annotation copyright by Book News, Inc., Portland, OR
Impedance Boundary Conditions In Electromagnetics
Author: Daniel J. Hoppe
Publisher: CRC Press
ISBN: 9781560323853
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
Electromagnetic scattering from complex objects has been an area of in-depth research for many years. A variety of solution methodologies have been developed and utilised for the solution of ever increasingly complex problems. Among these methodologies, the subject of impedance boundary conditions has interested the authors for some time. In short, impedance boundary conditions allow one to replace a complex structure with an appropriate impedance relationship between the electric and magnetic fields on the surface of the object. This simplifies the solution of the problem considerably, allowing one to ignore the complexity of the internal structure beneath the surface. This book examines impedance boundary conditions in electromagnetics. The introductory chapter provides a presentation of the role of the impedance boundary conditions in solving practical electromagnetic problems and some historical background. One of the main objectives of this book is to present a unified and thorough discussion of this important subject. A method based on a spectral domain approach is presented to derive the Higher Order Impedance Boundary Conditions (HOIBC). The method includes all of the existing approximate boundary conditions, such as the Standard Impedence Boundary Condition, the Tensor Impedence Boundary Condition and the Generalised Impedance Boundary Conditions, as special cases. The special domain approach is applicable to complex coatings and surface treatments as well as simple dielectric coatings. The spectral domain approach is employed to determine the appropriate boundary conditions for planar dielectric coatings, chiral coatings and corregated conductors. The accuracy of the proposal boundary conditions is discussed. The approach is then extended to include the effects of curvature and is applied to curved dielectric and chiral coatings. Numerical data is presented to critically assess the accuracy of the results obtained using various forms of the impedence boundary conditions. A number of appendices that provide more detail on some of the topics addressed in the main body of the book and a selective list of references directly related to the topics addressed in this book are also included.
Publisher: CRC Press
ISBN: 9781560323853
Category : Technology & Engineering
Languages : en
Pages : 196
Book Description
Electromagnetic scattering from complex objects has been an area of in-depth research for many years. A variety of solution methodologies have been developed and utilised for the solution of ever increasingly complex problems. Among these methodologies, the subject of impedance boundary conditions has interested the authors for some time. In short, impedance boundary conditions allow one to replace a complex structure with an appropriate impedance relationship between the electric and magnetic fields on the surface of the object. This simplifies the solution of the problem considerably, allowing one to ignore the complexity of the internal structure beneath the surface. This book examines impedance boundary conditions in electromagnetics. The introductory chapter provides a presentation of the role of the impedance boundary conditions in solving practical electromagnetic problems and some historical background. One of the main objectives of this book is to present a unified and thorough discussion of this important subject. A method based on a spectral domain approach is presented to derive the Higher Order Impedance Boundary Conditions (HOIBC). The method includes all of the existing approximate boundary conditions, such as the Standard Impedence Boundary Condition, the Tensor Impedence Boundary Condition and the Generalised Impedance Boundary Conditions, as special cases. The special domain approach is applicable to complex coatings and surface treatments as well as simple dielectric coatings. The spectral domain approach is employed to determine the appropriate boundary conditions for planar dielectric coatings, chiral coatings and corregated conductors. The accuracy of the proposal boundary conditions is discussed. The approach is then extended to include the effects of curvature and is applied to curved dielectric and chiral coatings. Numerical data is presented to critically assess the accuracy of the results obtained using various forms of the impedence boundary conditions. A number of appendices that provide more detail on some of the topics addressed in the main body of the book and a selective list of references directly related to the topics addressed in this book are also included.
Dynamic Electromagnetics
Author: Paul Diament
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 520
Book Description
Drawn from the author's decades of experience teaching the subject, Dynamic Electromagnetics offers a uniquely accessible approach to a discipline often viewed as complicated and mysterious. The text addresses the key principles with extensive problems and examples and provides comprehensive coverage without overwhelming the student with advanced math.Gauss's Law, Surface Integrals, and Electric Fields, Ampère's Law, Line Integrals, and Magnetic Fields, Emf, Field Dynamics, and Maxwell's Equations, Maxwell's Equations and Quasistatic Analysis, Transmission Lines, Time Delay, and Wave Propagation, Steady-State Wave Transmission and Plane Waves, Impedance Matching Techniques and Oblique Waves, Poynting Theorems and Lossy Transmission Lines, Waveguiding and Radiating Structures.For individuals interested in an accessible approach to Electromagnetics.
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 520
Book Description
Drawn from the author's decades of experience teaching the subject, Dynamic Electromagnetics offers a uniquely accessible approach to a discipline often viewed as complicated and mysterious. The text addresses the key principles with extensive problems and examples and provides comprehensive coverage without overwhelming the student with advanced math.Gauss's Law, Surface Integrals, and Electric Fields, Ampère's Law, Line Integrals, and Magnetic Fields, Emf, Field Dynamics, and Maxwell's Equations, Maxwell's Equations and Quasistatic Analysis, Transmission Lines, Time Delay, and Wave Propagation, Steady-State Wave Transmission and Plane Waves, Impedance Matching Techniques and Oblique Waves, Poynting Theorems and Lossy Transmission Lines, Waveguiding and Radiating Structures.For individuals interested in an accessible approach to Electromagnetics.
Electromagnetic Fields in Cavities
Author: David A. Hill
Publisher: John Wiley & Sons
ISBN: 9780470495049
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.
Publisher: John Wiley & Sons
ISBN: 9780470495049
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
A thorough and rigorous analysis of electromagnetic fields in cavities This book offers a comprehensive analysis of electromagnetic fields in cavities of general shapes and properties. Part One covers classical deterministic methods to conclude resonant frequencies, modal fields, and cavity losses; quality factor; mode bandwidth; and the excitation of cavity fields from arbitrary current distributions for metal-wall cavities of simple shape. Part Two covers modern statistical methods to analyze electrically large cavities of complex shapes and properties. Electromagnetic Fields in Cavities combines rigorous solutions to Maxwell's equations with conservation of energy to solve for the statistics of many quantities of interest: penetration into cavities (and shielding effectiveness), field strengths far from and close to cavity walls, and power received by antennas within cavities. It includes all modes and shows you how to utilize fairly simple statistical formulae to apply to your particular problem, whether it's interference calculations, electromagnetic compatibility testing in reverberation chambers, measurement of shielding materials using multiple cavities, or efficiency of test antennas. Electromagnetic Fields in Cavities is a valuable resource for researchers, engineers, professors, and graduate students in electrical engineering.
Principles of Electrodynamics
Author: Melvin Schwartz
Publisher: Courier Corporation
ISBN: 0486134679
Category : Science
Languages : en
Pages : 370
Book Description
The 1988 Nobel Prize winner establishes the subject's mathematical background, reviews the principles of electrostatics, then introduces Einstein's special theory of relativity and applies it to topics throughout the book.
Publisher: Courier Corporation
ISBN: 0486134679
Category : Science
Languages : en
Pages : 370
Book Description
The 1988 Nobel Prize winner establishes the subject's mathematical background, reviews the principles of electrostatics, then introduces Einstein's special theory of relativity and applies it to topics throughout the book.
Theory and Computation of Electromagnetic Fields in Layered Media
Author: Vladimir Okhmatovski
Publisher: John Wiley & Sons
ISBN: 1119763193
Category : Science
Languages : en
Pages : 756
Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.
Publisher: John Wiley & Sons
ISBN: 1119763193
Category : Science
Languages : en
Pages : 756
Book Description
Explore the algorithms and numerical methods used to compute electromagnetic fields in multi-layered media In Theory and Computation of Electromagnetic Fields in Layered Media, two distinguished electrical engineering researchers deliver a detailed and up-to-date overview of the theory and numerical methods used to determine electromagnetic fields in layered media. The book begins with an introduction to Maxwell’s equations, the fundamentals of electromagnetic theory, and concepts and definitions relating to Green’s function. It then moves on to solve canonical problems in vertical and horizontal dipole radiation, describe Method of Moments schemes, discuss integral equations governing electromagnetic fields, and explains the Michalski-Zheng theory of mixed-potential Green’s function representation in multi-layered media. Chapters on the evaluation of Sommerfeld integrals, procedures for far field evaluation, and the theory and application of hierarchical matrices are also included, along with: A thorough introduction to free-space Green’s functions, including the delta-function model for point charge and dipole current Comprehensive explorations of the traditional form of layered medium Green’s function in three dimensions Practical discussions of electro-quasi-static and magneto-quasi-static fields in layered media, including electrostatic fields in two and three dimensions In-depth examinations of the rational function fitting method, including direct spectra fitting with VECTFIT algorithms Perfect for scholars and students of electromagnetic analysis in layered media, Theory and Computation of Electromagnetic Fields in Layered Media will also earn a place in the libraries of CAD industry engineers and software developers working in the area of computational electromagnetics.