Author: Hideaki Takabe
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399
Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.
The Physics of Laser Plasmas and Applications - Volume 1
Author: Hideaki Takabe
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399
Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.
Publisher: Springer Nature
ISBN: 3030496139
Category : Science
Languages : en
Pages : 399
Book Description
The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.
An Introduction to Plasma Physics and Its Space Applications, Volume 1
Author: Luis Conde
Publisher: Morgan & Claypool Publishers
ISBN: 1643271741
Category : Science
Languages : en
Pages : 130
Book Description
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Publisher: Morgan & Claypool Publishers
ISBN: 1643271741
Category : Science
Languages : en
Pages : 130
Book Description
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.
Plasmas at High Temperature and Density
Author: Heinrich Hora
Publisher: Springer Science & Business Media
ISBN: 3540543120
Category : Science
Languages : en
Pages : 455
Book Description
This advanced textbook on fundamental macroscopic plasma physics emphasizes the nonlinear and relativistic effects due to laser-plasma interactions. Experiments with lasers of high intensity helped to discover new quantum effects and the longitudinal components of optical radiation in vacuum, and this in turn led to an extension of basic plasma physics, which is presented here together with its impact on classical topics such asinstabilities, solitons, resonance absorpption, etc. The reader will also find sections on energy problems and nuclear fusion.
Publisher: Springer Science & Business Media
ISBN: 3540543120
Category : Science
Languages : en
Pages : 455
Book Description
This advanced textbook on fundamental macroscopic plasma physics emphasizes the nonlinear and relativistic effects due to laser-plasma interactions. Experiments with lasers of high intensity helped to discover new quantum effects and the longitudinal components of optical radiation in vacuum, and this in turn led to an extension of basic plasma physics, which is presented here together with its impact on classical topics such asinstabilities, solitons, resonance absorpption, etc. The reader will also find sections on energy problems and nuclear fusion.
Introduction to Plasma Physics and Controlled Fusion
Author: Francis F. Chen
Publisher: Springer Science & Business Media
ISBN: 1475755953
Category : Science
Languages : en
Pages : 427
Book Description
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
Publisher: Springer Science & Business Media
ISBN: 1475755953
Category : Science
Languages : en
Pages : 427
Book Description
TO THE SECOND EDITION In the nine years since this book was first written, rapid progress has been made scientifically in nuclear fusion, space physics, and nonlinear plasma theory. At the same time, the energy shortage on the one hand and the exploration of Jupiter and Saturn on the other have increased the national awareness of the important applications of plasma physics to energy production and to the understanding of our space environment. In magnetic confinement fusion, this period has seen the attainment 13 of a Lawson number nTE of 2 x 10 cm -3 sec in the Alcator tokamaks at MIT; neutral-beam heating of the PL T tokamak at Princeton to KTi = 6. 5 keV; increase of average ß to 3%-5% in tokamaks at Oak Ridge and General Atomic; and the stabilization of mirror-confined plasmas at Livermore, together with injection of ion current to near field-reversal conditions in the 2XIIß device. Invention of the tandem mirror has given magnetic confinement a new and exciting dimension. New ideas have emerged, such as the compact torus, surface-field devices, and the EßT mirror-torus hybrid, and some old ideas, such as the stellarator and the reversed-field pinch, have been revived. Radiofrequency heat ing has become a new star with its promise of dc current drive. Perhaps most importantly, great progress has been made in the understanding of the MHD behavior of toroidal plasmas: tearing modes, magnetic Vll Vlll islands, and disruptions.
X-Rays From Laser Plasmas
Author: I. C. E. Turcu
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 348
Book Description
Soft X-rays have great potential for use in a wide variety of applications, including the semiconductor industry and the life sciences. X-Rays from Laser Plasmas: Generation and Applications focuses exclusively and in detail on the science and technology of soft X-rays produced with non-synchrotron sources. Using a minimum of mathematical formulae, it discusses how such X-rays can be efficiently and economically generated from plasmas produced by lasers, and how they interact with matter. Authored by Dr Edmond Turcu, one of the pioneers in this field, X-Rays from Laser Plasmas: Generation and Applications will be of great interest to a wide variety of readers, including all those working in X-ray lithography, microscopy, and radiobiology.
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 348
Book Description
Soft X-rays have great potential for use in a wide variety of applications, including the semiconductor industry and the life sciences. X-Rays from Laser Plasmas: Generation and Applications focuses exclusively and in detail on the science and technology of soft X-rays produced with non-synchrotron sources. Using a minimum of mathematical formulae, it discusses how such X-rays can be efficiently and economically generated from plasmas produced by lasers, and how they interact with matter. Authored by Dr Edmond Turcu, one of the pioneers in this field, X-Rays from Laser Plasmas: Generation and Applications will be of great interest to a wide variety of readers, including all those working in X-ray lithography, microscopy, and radiobiology.
The Physics Of Laser Plasma Interactions
Author: William Kruer
Publisher: CRC Press
ISBN: 1000754464
Category : Science
Languages : en
Pages : 171
Book Description
This book focuses on the physics of laser plasma interactions and presents a complementary and very useful numerical model of plasmas. It describes the linear theory of light wave propagation in plasmas, including linear mode conversion into plasma waves and collisional damping.
Publisher: CRC Press
ISBN: 1000754464
Category : Science
Languages : en
Pages : 171
Book Description
This book focuses on the physics of laser plasma interactions and presents a complementary and very useful numerical model of plasmas. It describes the linear theory of light wave propagation in plasmas, including linear mode conversion into plasma waves and collisional damping.
Handbook on Plasma Instabilities
Author: Ferdinand F. Cap
Publisher: Academic Press
ISBN: 148327098X
Category : Science
Languages : en
Pages : 575
Book Description
Handbook on Plasma Instabilities, Volume 2 consists of four chapters on plasma instabilities. Chapter 14 discusses the various aspects of microinstabilities. Beam-plasma systems are covered in Chapter 15, while the various stabilization methods are presented in Chapter 16. This book concludes with deliberations on parametric effects in Chapter 17. Other topics discussed include the microinstabilities of a homogeneous unmagnetized plasma; kinetic theory of macroscopic instabilities; basic beam physics; and beam-plasma instabilities. The magnetic field configuration stabilization; macroscopic nonmagnetic stabilization methods; parametric instabilities in homogeneous unmagnetized plasmas; and parametric effects in bounded and inhomogeneous plasmas are also elaborated in this text. This publication is beneficial to students and researchers conducting work on unstable plasma.
Publisher: Academic Press
ISBN: 148327098X
Category : Science
Languages : en
Pages : 575
Book Description
Handbook on Plasma Instabilities, Volume 2 consists of four chapters on plasma instabilities. Chapter 14 discusses the various aspects of microinstabilities. Beam-plasma systems are covered in Chapter 15, while the various stabilization methods are presented in Chapter 16. This book concludes with deliberations on parametric effects in Chapter 17. Other topics discussed include the microinstabilities of a homogeneous unmagnetized plasma; kinetic theory of macroscopic instabilities; basic beam physics; and beam-plasma instabilities. The magnetic field configuration stabilization; macroscopic nonmagnetic stabilization methods; parametric instabilities in homogeneous unmagnetized plasmas; and parametric effects in bounded and inhomogeneous plasmas are also elaborated in this text. This publication is beneficial to students and researchers conducting work on unstable plasma.
Strong Field Laser Physics
Author: Thomas Brabec
Publisher: Springer
ISBN: 0387347550
Category : Science
Languages : en
Pages : 590
Book Description
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
Publisher: Springer
ISBN: 0387347550
Category : Science
Languages : en
Pages : 590
Book Description
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
Atoms, Solids, and Plasmas in Super-Intense Laser Fields
Author: Dimitri Batani
Publisher: Springer Science & Business Media
ISBN: 9780306466151
Category : Science
Languages : en
Pages : 434
Book Description
Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily
Publisher: Springer Science & Business Media
ISBN: 9780306466151
Category : Science
Languages : en
Pages : 434
Book Description
Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily
Laser-Plasma Interactions
Author: Dino A. Jaroszynski
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454
Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap
Publisher: CRC Press
ISBN: 1584887796
Category : Science
Languages : en
Pages : 454
Book Description
A Solid Compendium of Advanced Diagnostic and Simulation ToolsExploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three ap