The Physics of Ferroelectric and Antiferroelectric Liquid Crystals

The Physics of Ferroelectric and Antiferroelectric Liquid Crystals PDF Author: Igor Mu?evi?
Publisher: World Scientific
ISBN: 981020325X
Category : Science
Languages : en
Pages : 682

Get Book Here

Book Description
This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.

The Physics of Ferroelectric and Antiferroelectric Liquid Crystals

The Physics of Ferroelectric and Antiferroelectric Liquid Crystals PDF Author: Igor Mu?evi?
Publisher: World Scientific
ISBN: 981020325X
Category : Science
Languages : en
Pages : 682

Get Book Here

Book Description
This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.

Ferroelectric and Antiferroelectric Liquid Crystals

Ferroelectric and Antiferroelectric Liquid Crystals PDF Author: Sven T. Lagerwall
Publisher: John Wiley & Sons
ISBN: 3527613595
Category : Technology & Engineering
Languages : en
Pages : 445

Get Book Here

Book Description
The study of ferroelectricity is a branch of solid state physics which has shown rapid growth during the recent years. Ferroelectric materials exhibit unusual electric properties which make them useful in modern (opto)electronic technology, esp. display technology. Ferroelectric and antiferroelectric liquid crystals, including also various polymer forms, are the hottest research topic today in liquid crystals. The field is at the very beginning of industrial exploitation - a sensitive phase in which a good reference work is needed and will have a broad spectrum of readers both at universities and in industry.

The Physics Of Ferroelectric And Antiferroelectric Liquid Crystals

The Physics Of Ferroelectric And Antiferroelectric Liquid Crystals PDF Author: Robert Blinc
Publisher: World Scientific
ISBN: 9814506745
Category : Science
Languages : en
Pages : 682

Get Book Here

Book Description
This book presents the basic physics of ferroelectric and antiferroelectric liquid crystals in a simple and transparent way. It treats both the basic and the applied aspects of ferroelectric and antiferroelectric liquid crystal research, starting from the discovery of ferroelectricity in liquid crystals in 1975 and ending with the resonant X-ray experiment in ferrielectric and antiferrielectric phases in 1998. Particular attention is paid to the optical properties, electrooptic effects, phase transitions and experimental methods used in liquid crystal research. Special chapters are devoted to dielectric spectroscopy, light scattering, NMR, STM and AFM in complex fluids. The more than 300 illustrations help to present the basic physics of liquid crystalline ferroelectrics and antiferroelectrics in a way that can be easily followed by students, engineers and scientists dealing with liquid crystal research.

Dielectric Properties Of Liquid Crystals

Dielectric Properties Of Liquid Crystals PDF Author: Zbigniew Galewski
Publisher:
ISBN: 9788178952888
Category : Liquid crystals
Languages : en
Pages : 283

Get Book Here

Book Description
Introduction - This book, consisting of 10 chapters, should be treated as a complement that brings the reader up to date with the latest contributions to the rich literature on liquid crystals. A prominent place in this literature is occupied by the dielectric properties which are important in estimation of usefulness of these materials and in understanding the molecular processes determining various mesophases. In the field of dielectrics in general, and in connection with the structure and phase transitions the entries in references [1-14] can be recommended. With respect to general aspects of liquid-crystalline properties and molecular dynamics one can point out the references [15-36]. Most of them contain as well chapters on dielectric properties. In addition there is a number of books and monographs related strictly to the dielectric properties of liquid crystals, in particular references [37-45]. For the readers less familiar with this topic and interested in the basic knowledge of dielectric aspects of liquid crystals one can suggest the reviews [46-48]. Basic difference between properties of isotropic liquid and liquid crystal lies in the existence in the latter case of at least one degree of order. The ordering can be also considered with respect to a crystalline phase. Thus introducing at least one degree of disorder (rotational or translational) causes the occurrence of a mesophase which, however, is not identical with the liquid-crystalline phase. If the mesophase is to be liquid-crystalline, it should possess at least one translational degree of disorder. The disorder connected with further degrees of freedom leads to rich polymorphism. The most characteristic feature of liquid-crystalline phases is a precisely defined degree of disorder of molecules building these phases and their anisotropy which is exhibited in molecular structure and all measurable physical parameters such as polarizability. This is the reason why such phases are also called anisotropic liquids. The insertion into the molecules that form mesophases of fragments either chiral or influencing antagonistically already present fragments (e.g. by replacing one alkyl group by perfluorinated chain) leads to additional interactions which compete with interactions responsible for the stability of liquid-crystalline phases. This causes the frustration phenomena, i.e. the mutual overlapping of interactions frequently responsible for opposite effects. These induced phenomena conduce to unexpected structures (banana-type or columnar-type mesophases) and properties such as helicity, ferroelectricity or antiferroelectricity. Of particular interest seem to be ferroelectric liquid crystals (chiral tilted smectics such as SmC*, SmI* and others) showing collective modes: tilt fluctuations (soft modes) and phase fluctuations (Goldstone mode). Unusual progress observed in the last half-century has occurred due to use of some additional interacting fragments and structural details. Liquid crystalline polymers and metalomesogens present rapidly growing branches of knowledge of liquid crystal. Ferromagnetism and superconductivity of liquid crystals still pose a challenge. In this monograph we present different aspects of dielectric properties of mesogens. Chapter 1 presented by Otowski is dedicated to general problems of the molecular dipole s motion in electric field. Based on the broadband dielectric studies results of a few liquid-crystalline substances, their dielectric behavior is discussed by means of Nordio-Rigatti-Segre theory. The pretransitional anomalies observed in isotropic phase close to the phase transitions by means of dielectric measurements are described by Drozd-Rzoska, Rzoska and Janik in Chapter 2. An extended part of this book is devoted to chiral liquid crystals, the importance of which for applications and expectations for them are continuously increasing. The principles of the dielectric behavior of chiral liquid-crystalline compounds based on general considerations applying for other dipolar systems as well is presented by Hoffmann in Chapter 3. In general considerations based on the example of 12 selected substances showing extremely rich polymorphism Marzec, Mikulko, Wróbel and Haase analyze impressive behaviors of collective modes (Chapter 4). The problem of non-linear dielectric effects constitutes an important part of this book. A general introduction to the non-linear dielectric spectroscopy is contained in Chapter 5 elaborated by Kedziora, who concentrates himself on the isotropic phase, solutions and precritical phenomena. The problem of molecular properties of smectic materials and relaxation in ferroelectric liquid crystals with particular attention paid to electrooptic phenomena are discussed by Kuczynski in Chapter 6. Advantages of electrooptic methods applied to chiral tilted smectic liquid crystals with either ferroelectric or antiferroelectric dipole order are known. However, less popular problem of so called organic glass formers presented by Massalska-Arodz, Sciesinska, Sciesinski, Krawczyk, Inoba and Zielinski in Chapter 7 deserved attentions. Properties of these materials are discussed by using the results of complementary methods such as INS, QENS, adiabatic calorimetry and far-infrared spectra. Chapter 8, presented by Rózanski, is devoted to the dielectric properties of liquid crystals confined in porous matrices or dispersed throughout solid matrices. Such systems seem to be fascinating not only from the point of view of surface interactions but also due to attractive properties of dispersed systems in nanoscale. Of great value is also Chapter 9 by Kocot, Merkel, Sufin, Vij and Mehl describing dendrimeric liquid crystals built of molecules containing siloxane or carbosilazane cores. The problems of dynamics and ordering are discussed in terms of IR and dielectric spectroscopy results. Chapter 10, written by Urban, is committed to the relaxation processes in calamitic liquid crystals with emphasis on pressure and temperature effects. Finally let us direct readers attention to general references relating to the new liquid crystalline compounds [49] and IUPAC classification of these systems [50]. 1. Boettcher C. J. F., van Belle O.C., Bordewijk P. and Rip A., 1973, Theory of Electric Polarization, Vol.I: Dielectrics in Static Fields, 2nd revised edition, Elsevier Science Ltd, Amsterdam. 2. Boettcher C.J.F. and Bordewijk, 1978, Theory of Electric Polarization, Vol.II. Dielectrics in Time-dependent Fields, 2nd revised edition, Elsevier Science Ltd, Amsterdam. 3. Hill N., Vaughan W.E., Price A.H. and Davies M., 1969, Dielectric Properties and Molecular Behaviour, van Nostrand, London. 4. Froehlich H., 1958, Theory of Dielectrics, Oxford University Press, London. 5. von Hippel A.R., 1995, Dielectric Materials and Applications, Artech House Publishers. 6. Davies M., 1965, Some Electrical and Optical Aspects of Molecular Behaviour, Pergamon Press, Oxford. 7. Scaife B.K.P., 1998, Principle of Dielectrics, Revised edition, Oxford University Press, Clarendon, Oxford. 8. Riande E. and Diaz-Calleja R., 2004, Electrical Properties of Polymers, Marcel Dekker, NY. 9. Jonscher A.K., 1996, Universal Relaxation Law, Chelsea Dielectric Press Ltd, London. 10. Grigas J., 1996, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Series: Ferroelectricity and Related Phenomena, Volume 9, Gordon and Breach Science Publishers, Philadelphia. 11. Runt J.P. and Fitzgerald J.J.(Eds.), 1997, Dielectric Spectroscopy of Polymeric Materials, American Chemical Society, Washington, DC. 12. Havriliak S. and Havriliak S.J., 1996, Dielectric and Mechanical Relaxation in Materials, Hanser Verlag, München. 13. Gaiduk V.I. and McConnel J.R., 1999, Dielectric Relaxation and Dynamics of Polar Molecules, World Scientific Pub. Co.Inc., Singapore. 14. Kremer F. and Schönhals A. (Eds) 2002, Broadband Dielectric Spectroscopy, Springer, NY. 15. Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), 1998, Handbook of Liquid Crystals, 4-Volume Set, Wiley-VCH, Veinheim. 16. Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V (Eds.), 1999, Physical Properties of Liquid Crystals, Wiley-VCH, Veinheim. 17. Stegemeyer H. (Ed.), 1994, Liquid Crystals, Steinkopff, Darmstadt and Springer, NY. 18. Buka A. (Ed.), 1993, Modern Topics in Liquid Crystals. From Neutron Scattering to Ferroelectricity, World Scientific, Singapore. 19. Dierking I., 2003. Texture of Liquid Crystals, Wiley-VCH, Weinheim. 20. Luckhurst G.R. and Gray G.W. (Eds.), 1979, The Molecular Physics of Liquid Crystals, Academic Press, London. 21. de Gennes P.G. and Prost J., 1993, The Physics of Liquid Crystals, 2nd edition, Clarendon Press, Oxford. 22. Gray G.W. and Goodby J.W., 1984, Smectic Liquid Crystals. Textures and Structures, Leonard Hill, Glasgow. 23. Martellucci S. and Chester A.N. (Eds.), 1992, Phase Transitions in Liquid Crystals, NATO ASI Series, Vol.B290, Plenum Press, NY. 24. Luckhurst G.R. and Veracini C.A. (Eds.), 1994. The Molecular Dynamics of Liquid Crystals, NATO ASI Series, Vol.C431, Kluwer, Dordrecht. 25. Priestley E.B., Wojtowicz P.J. and Sheng P. (Eds.), 1975, Introduction to Liquid Crystals, Plenum Press, NY. 26. Lagerwall S.T., 1999, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, Weinheim. 27. Baus M., Rull L.F. and Ryckaert J.P. (Eds.), 1995, Observation, Prediction and Simulation of Phase Traansitions in Complex Fluids, Kluwer, Dordrecht. 28. Anisimov M.A., 1991, Critical Phenomena in Liquids and Liquid Crystals, Gordon & Breach, Philadelphia 29. Vertogen G. and de Jeu W.H., 1986, Thermotropic Liquid Crystals, Fundamentals, Springer, Berlin 30. de Jeu W.H., 1980, Physical Properties of Liquid Crystalline Materials, Gordon & Breach, NY 31. Helfrich W. and Heppke G., (Eds.), 1980, Liquid Crystals of One and Two Dimensional Order, Springer, Berlin. 32. Goodby J.W., Blinc R., Clark N.A., Lagerwall S.T., Osipov M.A., Pikin S.A., Sakurai T., Yoshino K. and }eka B., 1991, Ferroelectric Liquid Crystals. Principles, Properties and Applications, Series: Ferroelectricity and Related Phenomena, Volume 7. Gordon and Breach, Philadelphia. 33. Pikin S.A., 1991, Structural Transformations in Liquid Crystals, Gordon and Breach, NY. 34. Haberlandt R., Michel D., Poppel A. and Stannarius R., 2005, Molecules in interaction with surfaces and interfaces, Springer NY. 35. Crawford G.P. and }umer S., (Eds), Liquid Crystals in Complex Geometries, 1996, Taylor & Francis, London. 36. Muaevic I., Blinc R. and }eka B., 2000, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals, World Scientific, Singapore. 37. Haase W. and Wróbel S. (Eds.), 2003, Relaxation Phenomena. Liquid Crystals, Magnetic Systems, Polymers, High-TC Superconductors, Metallic Glasses., Springer, NY. 38. Kresse H., 1983, in: Advances in Liquid Crystals, Vol.6, Brown G.H. (ed.), Academic Press, NY. 39. Coffey W.T. and Kalmykov Y.P. 2000, Adv.Chem.Phys. 111, 487. 40. de Jeu W.H., 1978, in: Solid State Physics, Supplement 14. Liebert L. (ed.), Academic Press. 41. Rzoska S.J. and Zhelezny V.P., (Eds), 2004, Nonlinear Dielectric Phenomena in Complex Liquids, Kluwer, Dordrecht. 42. Urban S. and Wuerflinger A., 1979, Adv.Chem.Phys., 98, 143. 43. Kresse H., 1982, Fortschrifte der Physik, 80, 507. 44. Urban S., 2001, in: Physical Properties of Liquid Crystals: Nematics, Dunmur D., Fukuda A. and Luckhurst G. (Eds.), Inspec, London, p.267. 45. Blinov L.M. and Chigrinov V.G., 1994, Electrooptic Effects in Liquid Crystal Materials, Springer, NY. 46. Meier G. and Saupe A., 1966, in: Liquid Crystals, Brown G.H., Dines G.J. and Labes M.M. (Eds.), Gordon and Breach, Philadelphia. 47. Kresse H., 1998, in: Handbook of Liquid Crystals, Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), Vol.2, Wiley-VCH, Veinheim. 48. Dunmur D and Toriyama K., 1998, in: Handbook of Liquid Crystals, Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), Vol. 1, Wiley-VCH, Veinheim. 49. Vill V., 2006, LiqCryst 4.6. Data Base, Fujitsu. 50. Byron M. et al. 2001, Pure Appl.Chem., 73, 845.

Ferroelectric Liquid Crystals

Ferroelectric Liquid Crystals PDF Author: L. A. Beresnev
Publisher: CRC Press
ISBN: 9782881242458
Category : Ferroelectric crystals
Languages : en
Pages : 156

Get Book Here

Book Description


The Physics of Liquid Crystals

The Physics of Liquid Crystals PDF Author: P. G. de Gennes
Publisher: Oxford University Press
ISBN: 9780198517856
Category : Science
Languages : en
Pages : 620

Get Book Here

Book Description
This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.

The Physics and Application of Liquid Crystal/ferroelectric Particles Colloids

The Physics and Application of Liquid Crystal/ferroelectric Particles Colloids PDF Author: Fenghua Li
Publisher:
ISBN:
Category : Colloids
Languages : en
Pages : 264

Get Book Here

Book Description
The liquid crystalline phases have been of great fundamental interest and at the same time found enormous recent application in display and photonic devices. Much effort has been put into developing new type liquid crystals, with fast response times, higher birefringence, low driving voltage and so on, but the chemical synthesis of obtaining such LCs can often be difficult. By contrast, this thesis utilizes ferroelectric colloidal dispersions to dope liquid crystals. Colloids in liquid crystalline hosts present new physical features as the anisotropic intermolecular interactions compete against colloidal interactions. These dilute colloids are stable since the particles were coated with surfactant. Most particles remain separated at a certain stable distance. Because the particles are so small, they do not disturb the LC orientation. The colloids therefore are macroscopically homogeneous and appear similar to a pure liquid crystal with no visible evidence of the dispersed particles. At the same time, nanoparticles are large enough to maintain their ferroelectricity and integrate these intrinsic properties with the LC host. In this thesis, I focus on physics of these ferroelectric liquid crystals colloids and describe a new non-synthetic method of modifying the properties of existing liquid crystals by doping them with surfactant-processed ferroelectric nanoparticles. Special attention was paid to investigate the electro-optic properties of ferroelectric nematic colloids for display applications. At very low concentration, sub-micron ferroelectric particles show very fascinating enhancement to liquid crystal mixtures, such as, higher birefringence ([delta]n), higher dielectric anisotropy, and T[subscript ni] temperature and so on. These results indicate that low concentrated ferroelectric nanoparticles may enhance the orientational ordering of nematic liquid crystals. Traditionally, by changing the molecular structure, the molecular type, and polarizability, people can synthesize and modify the long-rang macroscopic properties of LC mixtures. Not only the time and effort are huge, but also the results of synthesis, such as clearing point and viscoelastic properties, can not be predicted. Doping ferroelectric nanoparticles is a simple and effective approach to control and modify LC properties.

Modern Topics in Liquid Crystals

Modern Topics in Liquid Crystals PDF Author: Agnes Buka
Publisher: World Scientific
ISBN: 9789810215392
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description
This volume contains 19 review articles, written by leading experts in the field of neutron scattering, NMR, dielectric spectroscopy, ferroelectricity, liquid crystal polymers as well as related subjects. The articles cover a broad range of topics which are currently the center of focus and interest in this field. The book will be useful for experienced researchers as well as students and those who want to enter the field. Apart from the fact that such a publication covers a gap in the literature, there is also a personal actuality. This volume will be devoted to Professor L Bata, who started the liquid crystal research in Hungary some 25 years ago and who is still head of the department at KFKI today. He initiated a lot of new subjects in the field and supported many young scientists during these years. He is celebrating his 60th birthday this year.

Structure and Properties of Liquid Crystals

Structure and Properties of Liquid Crystals PDF Author: Lev M. Blinov
Publisher: Springer Science & Business Media
ISBN: 9048188296
Category : Science
Languages : en
Pages : 448

Get Book Here

Book Description
This book by Lev M. Blinov is ideal to guide researchers from their very first encounter with liquid crystals to the level where they can perform independent experiments on liquid crystals with a thorough understanding of their behaviour also in relation to the theoretical framework. Liquid crystals can be found everywhere around us. They are used in virtually every display device, whether it is for domestic appliances of for specialized technological instruments. Their finely tunable optical properties make them suitable also for thermo-sensing and laser technologies. There are many monographs written by prominent scholars on the subject of liquid crystals. The majority of them presents the subject in great depth, sometimes focusing on a particular research aspect, and in general they require a significant level of prior knowledge. In contrast, this books aims at an audience of advanced undergraduate and graduate students in physics, chemistry and materials science. The book consists of three parts: the first part, on structure, starts from the fundamental principles underlying the structure of liquid crystals, their rich phase behaviour and the methods used to study them; the second part, on physical properties, emphasizes the influence of anisotropy on all aspects of liquid crystals behaviour; the third, focuses on electro-optics, the most important properties from the applications standpoint. This part covers only the main effects and illustrates the underlying principles in greater detail. Professor Lev M. Blinov has had a long carrier as an experimentalist. He made major contributions in the field of ferroelectric mesophases. In 1985 he received the USSR state prize for investigations of electro-optical effects in liquid crystals for spatial light modulators. In 1999 he was awarded the Frederiks medal of the Soviet Liquid Crystal Society and in 2000 he was honoured with the G. Gray silver medal of the British Liquid Crystal Society. He has held many visiting academic positions in universities and laboratories across Europe and in Japan.

Photoalignment of Liquid Crystalline Materials

Photoalignment of Liquid Crystalline Materials PDF Author: Vladimir G. Chigrinov
Publisher: John Wiley & Sons
ISBN: 0470751797
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Photoalignment possesses significant advantages in comparison with the usual ‘rubbing’ treatment of the substrates of liquid crystal display (LCD) cells as it is a non-contact method with a high resolution. A new technique recently pioneered by the authors of this book, namely the photo-induced diffusion reorientation of azodyes, does not involve any photochemical or structural transformations of the molecules. This results in photoaligning films which are robust and possess good aligning properties making them particularly suitable for the new generation of liquid crystal devices. Photoalignment of Liquid Crystalline Materials covers state-of-the-art techniques and key applications, as well as the authors’ own diffusion model for photoalignment. The book aims to stimulate new research and development in the field of liquid crystalline photoalignment and in so doing, enable the technology to be used in large scale LCD production. Key features: Provides a full examination of the mechanisms of photoalignment. Examines the properties of liquid crystals during photoalignment, with particular reference made to the effect on their chemical structure and stability. Considers the most useful photosensitive materials and preparation procedures suitable for liquid crystalline photoalignment. Presents several methods for photoalignment of liquid crystals. Compares various applications of photoalignment technology for in-cell patterned polarizers and phase retarders, transflective and micro displays, security and other liquid crystal devices. Through its interdisciplinary approach, this book is aimed at a wide range of practising electrical engineers, optical engineers, display technologists, materials scientists, physicists and chemists working on the development of liquid crystal devices. It will also appeal to researchers and graduate students taking courses on liquid crystals or display technologies. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics