Author: Jennifer Susan Gilbert
Publisher: Geological Society of London
ISBN: 9781862390201
Category : Nature
Languages : en
Pages : 200
Book Description
The Physics of Explosive Volcanic Eruptions includes seven review papers that outline our current understanding of several aspects of the physical processes affecting magma during volcanic eruptions. An introductory chapter highlights research areas where our understanding is incomplete, or even completely lacking, and where work needs advancing if our knowledge of volcanic processes is to be substantially improved. The book covers topics on the physical properties of silicic magma, vesiculation processes, conduit flow and fragmentation, gas loss from magmas during eruption, models of volcanic eruption columns, tephra dispersal and pyroclastic density currents.
The Physics of Explosive Volcanic Eruptions
Author: Jennifer Susan Gilbert
Publisher: Geological Society of London
ISBN: 9781862390201
Category : Nature
Languages : en
Pages : 200
Book Description
The Physics of Explosive Volcanic Eruptions includes seven review papers that outline our current understanding of several aspects of the physical processes affecting magma during volcanic eruptions. An introductory chapter highlights research areas where our understanding is incomplete, or even completely lacking, and where work needs advancing if our knowledge of volcanic processes is to be substantially improved. The book covers topics on the physical properties of silicic magma, vesiculation processes, conduit flow and fragmentation, gas loss from magmas during eruption, models of volcanic eruption columns, tephra dispersal and pyroclastic density currents.
Publisher: Geological Society of London
ISBN: 9781862390201
Category : Nature
Languages : en
Pages : 200
Book Description
The Physics of Explosive Volcanic Eruptions includes seven review papers that outline our current understanding of several aspects of the physical processes affecting magma during volcanic eruptions. An introductory chapter highlights research areas where our understanding is incomplete, or even completely lacking, and where work needs advancing if our knowledge of volcanic processes is to be substantially improved. The book covers topics on the physical properties of silicic magma, vesiculation processes, conduit flow and fragmentation, gas loss from magmas during eruption, models of volcanic eruption columns, tephra dispersal and pyroclastic density currents.
From Magma to Tephra
Author: Armin Freundt
Publisher: Elsevier Science & Technology
ISBN:
Category : Nature
Languages : en
Pages : 344
Book Description
A summary of insights into key aspects of explosive volcanic eruptions, arranged into chapters in order of the processes involved, from the hot magma releasing gases as it rises through the Earth's crust to the final deposition of materials upon the Earth's surface.
Publisher: Elsevier Science & Technology
ISBN:
Category : Nature
Languages : en
Pages : 344
Book Description
A summary of insights into key aspects of explosive volcanic eruptions, arranged into chapters in order of the processes involved, from the hot magma releasing gases as it rises through the Earth's crust to the final deposition of materials upon the Earth's surface.
Modeling Volcanic Processes
Author: Sarah A. Fagents
Publisher: Cambridge University Press
ISBN: 1139619225
Category : Science
Languages : en
Pages : 902
Book Description
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Publisher: Cambridge University Press
ISBN: 1139619225
Category : Science
Languages : en
Pages : 902
Book Description
Understanding the physical behavior of volcanoes is key to mitigating the hazards active volcanoes pose to the ever-increasing populations living nearby. The processes involved in volcanic eruptions are driven by a series of interlinked physical phenomena, and to fully understand these, volcanologists must employ various physics subdisciplines. This book provides the first advanced-level, one-stop resource examining the physics of volcanic behavior and reviewing the state-of-the-art in modeling volcanic processes. Each chapter begins by explaining simple modeling formulations and progresses to present cutting-edge research illustrated by case studies. Individual chapters cover subsurface magmatic processes through to eruption in various environments and conclude with the application of modeling to understanding the other volcanic planets of our Solar System. Providing an accessible and practical text for graduate students of physical volcanology, this book is also an important resource for researchers and professionals in the fields of volcanology, geophysics, geochemistry, petrology and natural hazards.
Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309454158
Category : Science
Languages : en
Pages : 135
Book Description
Volcanic eruptions are common, with more than 50 volcanic eruptions in the United States alone in the past 31 years. These eruptions can have devastating economic and social consequences, even at great distances from the volcano. Fortunately many eruptions are preceded by unrest that can be detected using ground, airborne, and spaceborne instruments. Data from these instruments, combined with basic understanding of how volcanoes work, form the basis for forecasting eruptionsâ€"where, when, how big, how long, and the consequences. Accurate forecasts of the likelihood and magnitude of an eruption in a specified timeframe are rooted in a scientific understanding of the processes that govern the storage, ascent, and eruption of magma. Yet our understanding of volcanic systems is incomplete and biased by the limited number of volcanoes and eruption styles observed with advanced instrumentation. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing identifies key science questions, research and observation priorities, and approaches for building a volcano science community capable of tackling them. This report presents goals for making major advances in volcano science.
Publisher: National Academies Press
ISBN: 0309454158
Category : Science
Languages : en
Pages : 135
Book Description
Volcanic eruptions are common, with more than 50 volcanic eruptions in the United States alone in the past 31 years. These eruptions can have devastating economic and social consequences, even at great distances from the volcano. Fortunately many eruptions are preceded by unrest that can be detected using ground, airborne, and spaceborne instruments. Data from these instruments, combined with basic understanding of how volcanoes work, form the basis for forecasting eruptionsâ€"where, when, how big, how long, and the consequences. Accurate forecasts of the likelihood and magnitude of an eruption in a specified timeframe are rooted in a scientific understanding of the processes that govern the storage, ascent, and eruption of magma. Yet our understanding of volcanic systems is incomplete and biased by the limited number of volcanoes and eruption styles observed with advanced instrumentation. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing identifies key science questions, research and observation priorities, and approaches for building a volcano science community capable of tackling them. This report presents goals for making major advances in volcano science.
Introduction to Volcanic Seismology
Author: Vyacheslav M Zobin
Publisher: Elsevier
ISBN: 0444563768
Category : Science
Languages : en
Pages : 501
Book Description
Volcanic seismology represents the main, and often the only, tool to forecast volcanic eruptions and to monitor the eruption process. This book describes the main types of seismic signals at volcanoes, their nature and spatial and temporal distributions at different stages of eruptive activity. Following from the success of the first edition, published in 2003, the second edition consists of 19 chapters including significant revision and five new chapters. Organized into four sections, the book begins with an introduction to the history and topic of volcanic seismology, discussing the theoretical and experimental models that were developed for the study of the origin of volcanic earthquakes. The second section is devoted to the study of volcano-tectonic earthquakes, giving the theoretical basis for their occurrence and swarms as well as case stories of volcano-tectonic activity associated with the eruptions at basaltic, andesitic, and dacitic volcanoes. There were 40 cases of volcanic eruptions at 20 volcanoes that occurred all over the world from 1910 to 2005, which are discussed. General regularities of volcano-tectonic earthquake swarms, their participation in the eruptive process, their source properties, and the hazard of strong volcano-tectonic earthquakes are also described. The third section describes the theoretical basis for the occurrence of eruption earthquakes together with the description of volcanic tremor, the seismic signals associated with pyroclastic flows, rockfalls and lahars, and volcanic explosions, long-period and very-long-period seismic signals at volcanoes, micro-earthquake swarms, and acoustic events. The final section discuss the mitigation of volcanic hazard and include the methodology of seismic monitoring of volcanic activity, the examples of forecasting of volcanic eruptions by seismic methods, and the description of seismic activity in the regions of dormant volcanoes. This book will be essential for students and practitioners of volcanic seismology to understand the essential elements of volcanic eruptions. - Provides a comprehensive overview of seismic signals at different stages of volcano eruption. - Discusses dozens of case histories from around the world to provide real-world applications. - Illustrations accompany detailed descriptions of volcano eruptions alongside the theories involved.
Publisher: Elsevier
ISBN: 0444563768
Category : Science
Languages : en
Pages : 501
Book Description
Volcanic seismology represents the main, and often the only, tool to forecast volcanic eruptions and to monitor the eruption process. This book describes the main types of seismic signals at volcanoes, their nature and spatial and temporal distributions at different stages of eruptive activity. Following from the success of the first edition, published in 2003, the second edition consists of 19 chapters including significant revision and five new chapters. Organized into four sections, the book begins with an introduction to the history and topic of volcanic seismology, discussing the theoretical and experimental models that were developed for the study of the origin of volcanic earthquakes. The second section is devoted to the study of volcano-tectonic earthquakes, giving the theoretical basis for their occurrence and swarms as well as case stories of volcano-tectonic activity associated with the eruptions at basaltic, andesitic, and dacitic volcanoes. There were 40 cases of volcanic eruptions at 20 volcanoes that occurred all over the world from 1910 to 2005, which are discussed. General regularities of volcano-tectonic earthquake swarms, their participation in the eruptive process, their source properties, and the hazard of strong volcano-tectonic earthquakes are also described. The third section describes the theoretical basis for the occurrence of eruption earthquakes together with the description of volcanic tremor, the seismic signals associated with pyroclastic flows, rockfalls and lahars, and volcanic explosions, long-period and very-long-period seismic signals at volcanoes, micro-earthquake swarms, and acoustic events. The final section discuss the mitigation of volcanic hazard and include the methodology of seismic monitoring of volcanic activity, the examples of forecasting of volcanic eruptions by seismic methods, and the description of seismic activity in the regions of dormant volcanoes. This book will be essential for students and practitioners of volcanic seismology to understand the essential elements of volcanic eruptions. - Provides a comprehensive overview of seismic signals at different stages of volcano eruption. - Discusses dozens of case histories from around the world to provide real-world applications. - Illustrations accompany detailed descriptions of volcano eruptions alongside the theories involved.
Fundamentals of Physical Volcanology
Author: Liz Parfitt
Publisher: John Wiley & Sons
ISBN: 1444307568
Category : Science
Languages : en
Pages : 256
Book Description
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Publisher: John Wiley & Sons
ISBN: 1444307568
Category : Science
Languages : en
Pages : 256
Book Description
Fundamentals of Physical Volcanology is a comprehensive overview ofthe processes that control when and how volcanoes erupt.Understanding these processes involves bringing together ideas froma number of disciplines, including branches of geology, such aspetrology and geochemistry; and aspects of physics, such as fluiddynamics and thermodynamics. This book explains in accessible terms how different areas ofscience have been combined to reach our current level of knowledgeof volcanic systems. It includes an introduction to eruption types,an outline of the development of physical volcanology, acomprehensive overview of subsurface processes, eruptionmechanisms, the nature of volcanic eruptions and their products,and a review of how volcanoes affect the environment. Fundamentals of Physical Volcanology is essential reading forundergraduate students in earth science.
Pyroclastic Density Currents and the Sedimentation of Ignimbrites
Author: Michael J. Branney
Publisher: Geological Society of London
ISBN: 9781862391246
Category : Science
Languages : en
Pages : 156
Book Description
Publisher: Geological Society of London
ISBN: 9781862391246
Category : Science
Languages : en
Pages : 156
Book Description
Eruptions that Shook the World
Author: Clive Oppenheimer
Publisher: Cambridge University Press
ISBN: 1139496395
Category : Science
Languages : en
Pages : 409
Book Description
What does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs, or help humans to evolve, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution and the rise of fascism in Europe in the 19th century? These are some of the claims made for volcanic cataclysm. Volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and palaeoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins.
Publisher: Cambridge University Press
ISBN: 1139496395
Category : Science
Languages : en
Pages : 409
Book Description
What does it take for a volcanic eruption to really shake the world? Did volcanic eruptions extinguish the dinosaurs, or help humans to evolve, only to decimate their populations with a super-eruption 73,000 years ago? Did they contribute to the ebb and flow of ancient empires, the French Revolution and the rise of fascism in Europe in the 19th century? These are some of the claims made for volcanic cataclysm. Volcanologist Clive Oppenheimer explores rich geological, historical, archaeological and palaeoenvironmental records (such as ice cores and tree rings) to tell the stories behind some of the greatest volcanic events of the past quarter of a billion years. He shows how a forensic approach to volcanology reveals the richness and complexity behind cause and effect, and argues that important lessons for future catastrophe risk management can be drawn from understanding events that took place even at the dawn of human origins.
El Niño Southern Oscillation in a Changing Climate
Author: Michael J. McPhaden
Publisher: John Wiley & Sons
ISBN: 1119548128
Category : Science
Languages : en
Pages : 528
Book Description
Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.
Publisher: John Wiley & Sons
ISBN: 1119548128
Category : Science
Languages : en
Pages : 528
Book Description
Comprehensive and up-to-date information on Earth’s most dominant year-to-year climate variation The El Niño Southern Oscillation (ENSO) in the Pacific Ocean has major worldwide social and economic consequences through its global scale effects on atmospheric and oceanic circulation, marine and terrestrial ecosystems, and other natural systems. Ongoing climate change is projected to significantly alter ENSO's dynamics and impacts. El Niño Southern Oscillation in a Changing Climate presents the latest theories, models, and observations, and explores the challenges of forecasting ENSO as the climate continues to change. Volume highlights include: Historical background on ENSO and its societal consequences Review of key El Niño (ENSO warm phase) and La Niña (ENSO cold phase) characteristics Mathematical description of the underlying physical processes that generate ENSO variations Conceptual framework for understanding ENSO changes on decadal and longer time scales, including the response to greenhouse gas forcing ENSO impacts on extreme ocean, weather, and climate events, including tropical cyclones, and how ENSO affects fisheries and the global carbon cycle Advances in modeling, paleo-reconstructions, and operational climate forecasting Future projections of ENSO and its impacts Factors influencing ENSO events, such as inter-basin climate interactions and volcanic eruptions The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about this book from this Q&A with the editors.
The Mixing of Magmas
Author: Diego Perugini
Publisher: Springer Nature
ISBN: 303081811X
Category : Science
Languages : en
Pages : 169
Book Description
This book provides a common theoretical and practical basis to the multifaceted nature of magma mixing. This process represents a fundamental phenomenon both in the evolution of igneous rocks and in triggering explosive volcanic eruptions. The topic is attacked surgically merging field evidence, numerical models, and experiments in order to draw the most complete picture about this natural process. Arguments are discussed in the light of Chaos Theory and Fractal Geometry as new tools to understand the role of magma mixing as a fundamental petrological and volcanological process. The book is intended to be a source of information and a stimulus for new ideas in students, young and possibly more experienced researches.
Publisher: Springer Nature
ISBN: 303081811X
Category : Science
Languages : en
Pages : 169
Book Description
This book provides a common theoretical and practical basis to the multifaceted nature of magma mixing. This process represents a fundamental phenomenon both in the evolution of igneous rocks and in triggering explosive volcanic eruptions. The topic is attacked surgically merging field evidence, numerical models, and experiments in order to draw the most complete picture about this natural process. Arguments are discussed in the light of Chaos Theory and Fractal Geometry as new tools to understand the role of magma mixing as a fundamental petrological and volcanological process. The book is intended to be a source of information and a stimulus for new ideas in students, young and possibly more experienced researches.