Author: Edmund Husserl
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Philosophy of Arithmetic
Author: Edmund Husserl
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Publisher: Springer Science & Business Media
ISBN: 9401000603
Category : Mathematics
Languages : en
Pages : 558
Book Description
This volume is a window on a period of rich and illuminating philosophical activity that has been rendered generally inaccessible by the supposed "revolution" attributed to "Analytic Philosophy" so-called. Careful exposition and critique is given to every serious alternative account of number and number relations available at the time.
Philosophy of Mathematics
Author: David Bostock
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Publisher: John Wiley & Sons
ISBN: 1405189924
Category : Mathematics
Languages : en
Pages : 345
Book Description
Philosophy of Mathematics: An Introduction provides a critical analysis of the major philosophical issues and viewpoints in the concepts and methods of mathematics - from antiquity to the modern era. Offers beginning readers a critical appraisal of philosophical viewpoints throughout history Gives a separate chapter to predicativism, which is often (but wrongly) treated as if it were a part of logicism Provides readers with a non-partisan discussion until the final chapter, which gives the author's personal opinion on where the truth lies Designed to be accessible to both undergraduates and graduate students, and at the same time to be of interest to professionals
Philosophy of Mathematics
Author: Øystein Linnebo
Publisher: Princeton University Press
ISBN: 069120229X
Category : Mathematics
Languages : en
Pages : 214
Book Description
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
Publisher: Princeton University Press
ISBN: 069120229X
Category : Mathematics
Languages : en
Pages : 214
Book Description
A sophisticated, original introduction to the philosophy of mathematics from one of its leading thinkers Mathematics is a model of precision and objectivity, but it appears distinct from the empirical sciences because it seems to deliver nonexperiential knowledge of a nonphysical reality of numbers, sets, and functions. How can these two aspects of mathematics be reconciled? This concise book provides a systematic, accessible introduction to the field that is trying to answer that question: the philosophy of mathematics. Øystein Linnebo, one of the world's leading scholars on the subject, introduces all of the classical approaches to the field as well as more specialized issues, including mathematical intuition, potential infinity, and the search for new mathematical axioms. Sophisticated but clear and approachable, this is an essential book for all students and teachers of philosophy and of mathematics.
Philosophy of Mathematics and Deductive Structure in Euclid's Elements
Author: Ian Mueller
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
Publisher: Courier Dover Publications
ISBN:
Category : Mathematics
Languages : en
Pages : 404
Book Description
A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics and its similarities to modern views as well as its differences. It focuses on philosophical, foundational, and logical questions -- rather than focusing strictly on historical and mathematical issues -- and features several helpful appendixes.
An Introduction to the Philosophy of Mathematics
Author: Mark Colyvan
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
Publisher: Cambridge University Press
ISBN: 0521826020
Category : Mathematics
Languages : en
Pages : 199
Book Description
A fascinating journey through intriguing mathematical and philosophical territory - a lively introduction to this contemporary topic.
Introducing Philosophy of Mathematics
Author: Michele Friend
Publisher: Routledge
ISBN: 1317493788
Category : Philosophy
Languages : en
Pages : 294
Book Description
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
Publisher: Routledge
ISBN: 1317493788
Category : Philosophy
Languages : en
Pages : 294
Book Description
What is mathematics about? Does the subject-matter of mathematics exist independently of the mind or are they mental constructions? How do we know mathematics? Is mathematical knowledge logical knowledge? And how is mathematics applied to the material world? In this introduction to the philosophy of mathematics, Michele Friend examines these and other ontological and epistemological problems raised by the content and practice of mathematics. Aimed at a readership with limited proficiency in mathematics but with some experience of formal logic it seeks to strike a balance between conceptual accessibility and correct representation of the issues. Friend examines the standard theories of mathematics - Platonism, realism, logicism, formalism, constructivism and structuralism - as well as some less standard theories such as psychologism, fictionalism and Meinongian philosophy of mathematics. In each case Friend explains what characterises the position and where the divisions between them lie, including some of the arguments in favour and against each. This book also explores particular questions that occupy present-day philosophers and mathematicians such as the problem of infinity, mathematical intuition and the relationship, if any, between the philosophy of mathematics and the practice of mathematics. Taking in the canonical ideas of Aristotle, Kant, Frege and Whitehead and Russell as well as the challenging and innovative work of recent philosophers like Benacerraf, Hellman, Maddy and Shapiro, Friend provides a balanced and accessible introduction suitable for upper-level undergraduate courses and the non-specialist.
The Foundations of Arithmetic
Author: Gottlob Frege
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Publisher: John Wiley & Sons
ISBN: 0631126945
Category : Mathematics
Languages : en
Pages : 146
Book Description
A philosophical discussion of the concept of number In the book, The Foundations of Arithmetic: A Logico-Mathematical Enquiry into the Concept of Number, Gottlob Frege explains the central notions of his philosophy and analyzes the perspectives of predecessors and contemporaries. The book is the first philosophically relevant discussion of the concept of number in Western civilization. The work went on to significantly influence philosophy and mathematics. Frege was a German mathematician and philosopher who published the text in 1884, which seeks to define the concept of a number. It was later translated into English. This is the revised second edition.
Philosophy of Mathematics
Author: Stewart Shapiro
Publisher: Oxford University Press
ISBN: 0190282525
Category : Philosophy
Languages : en
Pages : 290
Book Description
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.
Publisher: Oxford University Press
ISBN: 0190282525
Category : Philosophy
Languages : en
Pages : 290
Book Description
Do numbers, sets, and so forth, exist? What do mathematical statements mean? Are they literally true or false, or do they lack truth values altogether? Addressing questions that have attracted lively debate in recent years, Stewart Shapiro contends that standard realist and antirealist accounts of mathematics are both problematic. As Benacerraf first noted, we are confronted with the following powerful dilemma. The desired continuity between mathematical and, say, scientific language suggests realism, but realism in this context suggests seemingly intractable epistemic problems. As a way out of this dilemma, Shapiro articulates a structuralist approach. On this view, the subject matter of arithmetic, for example, is not a fixed domain of numbers independent of each other, but rather is the natural number structure, the pattern common to any system of objects that has an initial object and successor relation satisfying the induction principle. Using this framework, realism in mathematics can be preserved without troublesome epistemic consequences. Shapiro concludes by showing how a structuralist approach can be applied to wider philosophical questions such as the nature of an "object" and the Quinean nature of ontological commitment. Clear, compelling, and tautly argued, Shapiro's work, noteworthy both in its attempt to develop a full-length structuralist approach to mathematics and to trace its emergence in the history of mathematics, will be of deep interest to both philosophers and mathematicians.
Arithmetic and Ontology
Author: Philip Hugly
Publisher: BRILL
ISBN: 9004333681
Category : Philosophy
Languages : en
Pages : 397
Book Description
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors’ account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
Publisher: BRILL
ISBN: 9004333681
Category : Philosophy
Languages : en
Pages : 397
Book Description
This volume documents a lively exchange between five philosophers of mathematics. It also introduces a new voice in one central debate in the philosophy of mathematics. Non-realism, i.e., the view supported by Hugly and Sayward in their monograph, is an original position distinct from the widely known realism and anti-realism. Non-realism is characterized by the rejection of a central assumption shared by many realists and anti-realists, i.e., the assumption that mathematical statements purport to refer to objects. The defense of their main argument for the thesis that arithmetic lacks ontology brings the authors to discuss also the controversial contrast between pure and empirical arithmetical discourse. Colin Cheyne, Sanford Shieh, and Jean Paul Van Bendegem, each coming from a different perspective, test the genuine originality of non-realism and raise objections to it. Novel interpretations of well-known arguments, e.g., the indispensability argument, and historical views, e.g. Frege, are interwoven with the development of the authors’ account. The discussion of the often neglected views of Wittgenstein and Prior provide an interesting and much needed contribution to the current debate in the philosophy of mathematics.
Philosophy of Mathematics
Author: Paul Benacerraf
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.
Publisher: Cambridge University Press
ISBN: 1107268133
Category : Science
Languages : en
Pages : 604
Book Description
The twentieth century has witnessed an unprecedented 'crisis in the foundations of mathematics', featuring a world-famous paradox (Russell's Paradox), a challenge to 'classical' mathematics from a world-famous mathematician (the 'mathematical intuitionism' of Brouwer), a new foundational school (Hilbert's Formalism), and the profound incompleteness results of Kurt Gödel. In the same period, the cross-fertilization of mathematics and philosophy resulted in a new sort of 'mathematical philosophy', associated most notably (but in different ways) with Bertrand Russell, W. V. Quine, and Gödel himself, and which remains at the focus of Anglo-Saxon philosophical discussion. The present collection brings together in a convenient form the seminal articles in the philosophy of mathematics by these and other major thinkers. It is a substantially revised version of the edition first published in 1964 and includes a revised bibliography. The volume will be welcomed as a major work of reference at this level in the field.