Author: Nevill Mott
Publisher: CRC Press
ISBN: 1466576456
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.
Metal-Insulator Transitions
Author: Nevill Mott
Publisher: CRC Press
ISBN: 1466576456
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.
Publisher: CRC Press
ISBN: 1466576456
Category : Technology & Engineering
Languages : en
Pages : 287
Book Description
This is a second edition of a classic book. Written by the late, great Sir Nevill Mott (Britain's last Nobel Prize winner for Physics), Metal Insulator Transitions has been greatly updated and expanded to further enhance its already enviable reputation.
The Mott Metal-Insulator Transition
Author: Florian Gebhard
Publisher: Springer Science & Business Media
ISBN: 3540614818
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
Publisher: Springer Science & Business Media
ISBN: 3540614818
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
The Mott Metal-Insulator Transition
Author: Florian Gebhard
Publisher: Springer
ISBN: 3540148582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
Publisher: Springer
ISBN: 3540148582
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
Little do we reliably know about the Mott transition, and we are far from a complete understanding of the metal --insulator transition due to electr- electron interactions. Mott summarized his basic ideas on the subject in his wonderful book Metal--Insulator nansitions that first appeared in 1974 11. 1). In his view, a Motk insulator displays a gap for charge-carrying excitations due to electron cowelations, whose importance is expressed by the presence of local magnetic moments regardless of whether or not they are ordered. Since the subject is far from being settled, different opinions on specific aspects of the Mott transition still persist. This book naturally embodies my own understanding of the phenomenon, inspired by the work of the late Sir Kevill Mott. The purpose of this book is twofold: first, to give a detailed presen- tion of the basic theoretical concopts for Mott insulators and, second, to test these ideas against the results from model calculations. For this purpose the Hubbard model and some of its derivatives are best suited. The Hubbard model describes a Mott transition with a mere minimum of tunable par- eters, and various exact statements and even exact solutions exist in certain limiting cases. Exact solutions not only allow us to test our basic ideas, but also help to assess the quality of approxin~ate theories for correlated electron systems.
Mott Insulators
Author: Sindhunil Barman Roy
Publisher:
ISBN: 9780750315968
Category : Electric insulators and insulating
Languages : en
Pages : 0
Book Description
"There have been many recent developments in the physics and materials science of Mott insulators, especially their recognition as emergent materials for important and innovative device applications such as information processing and storage, and the possibilities of even further applications in optical and thermal switches, thermo-chromic devices, gas sensors and even solar cell applications. Aimed at advanced undergraduate students of physics, chemistry, materials science, and electrical and electronics engineering, this book introduces the subject and reviews present knowledge in the field, enabling students and researchers to get acquainted with this very interesting and emerging area of science and technology. Professional researchers in academic institutions and industries already engaged in the programmes of correlated electron materials and devices will also find this title of use." -- Prové de l'editor.
Publisher:
ISBN: 9780750315968
Category : Electric insulators and insulating
Languages : en
Pages : 0
Book Description
"There have been many recent developments in the physics and materials science of Mott insulators, especially their recognition as emergent materials for important and innovative device applications such as information processing and storage, and the possibilities of even further applications in optical and thermal switches, thermo-chromic devices, gas sensors and even solar cell applications. Aimed at advanced undergraduate students of physics, chemistry, materials science, and electrical and electronics engineering, this book introduces the subject and reviews present knowledge in the field, enabling students and researchers to get acquainted with this very interesting and emerging area of science and technology. Professional researchers in academic institutions and industries already engaged in the programmes of correlated electron materials and devices will also find this title of use." -- Prové de l'editor.
Conductor Insulator Quantum Phase Transitions
Author: Vladimir Dobrosavljevic
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Publisher: Oxford University Press
ISBN: 0199592594
Category : Science
Languages : en
Pages : 583
Book Description
When many particles come together how do they organize themselves? And what destroys this organization? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them. It captures the excitement and the controversies on topics at the forefront of research.
Electronic Properties of Materials
Author: Rolf E. Hummel
Publisher: Springer Science & Business Media
ISBN: 3662024241
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
Publisher: Springer Science & Business Media
ISBN: 3662024241
Category : Technology & Engineering
Languages : en
Pages : 323
Book Description
The present book on electrical, optical, magnetic and thermal properties of materials is in many aspects different from other introductory texts in solid state physics. First of all, this book is written for engineers, particularly materials and electrical engineers who want to gain a fundamental under standing of semiconductor devices, magnetic materials, lasers, alloys, etc. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to understand. Thus, this book provides a thorough preparation for advanced texts, monographs, or special ized journal articles. Third, this book is not an encyclopedia. The selection oftopics is restricted to material which is considered to be essential and which can be covered in a 15-week semester course. For those professors who want to teach a two-semester course, supplemental topics can be found which deepen the understanding. (These sections are marked by an asterisk [*]. ) Fourth, the present text leaves the teaching of crystallography, X-ray diffrac tion, diffusion, lattice defects, etc. , to those courses which specialize in these subjects. As a rule, engineering students learn this material at the beginning of their upper division curriculum. The reader is, however, reminded of some of these topics whenever the need arises. Fifth, this book is distinctly divided into five self-contained parts which may be read independently.
The Metal-Nonmetal Transition Revisited
Author: P. Edwards
Publisher: CRC Press
ISBN: 1482272717
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
This text surveys the various aspects of the fundamental problem related to the metallic and non-metallic states of matter, a question physicists have been studying for almost 100 years. The book poses questions and challenges in this area, as well as highlighting present understandings of the topic. Topics covered by the book include physics of dense ionized metal plasmas; metallic hydrogen; pressure-induced metallization; the M-I transition in doped semiconductors; transport studies in doped semiconductors near the metal-insulator transition; new results in old oxides; metal-insulator transition in 3d transition metal perovskite oxides investigated by high-energy spectroscopies; alkali metal-alkali halide melts; hopping conductivity in granular metals revisited; superconductor-insulator transition in cuprates; molecular metals and superconductors; shear induced chemical reactivity; shear, co-ordination and metallization; quantum diffusion and decoherence; the Mott transition; recent results, more and surprises; Mott-Hubbard-Anderson models.
Publisher: CRC Press
ISBN: 1482272717
Category : Technology & Engineering
Languages : en
Pages : 439
Book Description
This text surveys the various aspects of the fundamental problem related to the metallic and non-metallic states of matter, a question physicists have been studying for almost 100 years. The book poses questions and challenges in this area, as well as highlighting present understandings of the topic. Topics covered by the book include physics of dense ionized metal plasmas; metallic hydrogen; pressure-induced metallization; the M-I transition in doped semiconductors; transport studies in doped semiconductors near the metal-insulator transition; new results in old oxides; metal-insulator transition in 3d transition metal perovskite oxides investigated by high-energy spectroscopies; alkali metal-alkali halide melts; hopping conductivity in granular metals revisited; superconductor-insulator transition in cuprates; molecular metals and superconductors; shear induced chemical reactivity; shear, co-ordination and metallization; quantum diffusion and decoherence; the Mott transition; recent results, more and surprises; Mott-Hubbard-Anderson models.
Oxide Electronics
Author: Asim K. Ray
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
Publisher: John Wiley & Sons
ISBN: 1119529476
Category : Technology & Engineering
Languages : en
Pages : 628
Book Description
Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equations throughout the book. Numerous supporting references are included, and each chapter is self-contained, making them perfect for use both as a reference and as study material. Readers will learn how and why the field of oxide electronics is a key area of research and exploitation in materials science, electrical engineering, and semiconductor physics. The book encompasses every application area where the functional and electronic properties of various genres of oxides are exploited. Readers will also learn from topics like: Thorough discussions of High-k gate oxide for silicon heterostructure MOSFET devices and semiconductor-dielectric interfaces An exploration of printable high-mobility transparent amorphous oxide semiconductors Treatments of graphene oxide electronics, magnetic oxides, ferroelectric oxides, and materials for spin electronics Examinations of the calcium aluminate binary compound, perovoksites for photovoltaics, and oxide 2Degs Analyses of various applications for oxide electronics, including data storage, microprocessors, biomedical devices, LCDs, photovoltaic cells, TFTs, and sensors Suitable for researchers in semiconductor technology or working in materials science, electrical engineering, and physics, Oxide Electronics will also earn a place in the libraries of private industry researchers like device engineers working on electronic applications of oxide electronics. Engineers working on photovoltaics, sensors, or consumer electronics will also benefit from this book.
Lecture Notes on Electron Correlation and Magnetism
Author: Patrik Fazekas
Publisher: World Scientific
ISBN: 9810224745
Category : Science
Languages : en
Pages : 794
Book Description
Readership: Graduate students and researchers in condensed matter physics.
Publisher: World Scientific
ISBN: 9810224745
Category : Science
Languages : en
Pages : 794
Book Description
Readership: Graduate students and researchers in condensed matter physics.
Physics of Transition Metal Oxides
Author: Sadamichi Maekawa
Publisher: Springer Science & Business Media
ISBN: 9783540212935
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.
Publisher: Springer Science & Business Media
ISBN: 9783540212935
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.