Author: Julien C. Sprott
Publisher: M & T Books
ISBN: 9781558512986
Category : Computers
Languages : en
Pages : 426
Book Description
Chaos and fractals are new mathematical ideas that have revolutionized our view of the world. They have application in virtually every academic discipline. This book shows examples of the artistic beauty that can arise from very simple equations, and teaches the reader how to produce an endless variety of such patterns. Disk includes a full working version of the program.
Strange Attractors
Author: Julien C. Sprott
Publisher: M & T Books
ISBN: 9781558512986
Category : Computers
Languages : en
Pages : 426
Book Description
Chaos and fractals are new mathematical ideas that have revolutionized our view of the world. They have application in virtually every academic discipline. This book shows examples of the artistic beauty that can arise from very simple equations, and teaches the reader how to produce an endless variety of such patterns. Disk includes a full working version of the program.
Publisher: M & T Books
ISBN: 9781558512986
Category : Computers
Languages : en
Pages : 426
Book Description
Chaos and fractals are new mathematical ideas that have revolutionized our view of the world. They have application in virtually every academic discipline. This book shows examples of the artistic beauty that can arise from very simple equations, and teaches the reader how to produce an endless variety of such patterns. Disk includes a full working version of the program.
The Essence Of Chaos
Author: Flavio Lorenzelli
Publisher: CRC Press
ISBN: 0203214587
Category : Science
Languages : en
Pages : 236
Book Description
The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.
Publisher: CRC Press
ISBN: 0203214587
Category : Science
Languages : en
Pages : 236
Book Description
The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.
The Theory of Chaotic Attractors
Author: Brian R. Hunt
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
Publisher: Springer Science & Business Media
ISBN: 9780387403496
Category : Mathematics
Languages : en
Pages : 528
Book Description
The editors felt that the time was right for a book on an important topic, the history and development of the notions of chaotic attractors and their "natu ral" invariant measures. We wanted to bring together a coherent collection of readable, interesting, outstanding papers for detailed study and comparison. We hope that this book will allow serious graduate students to hold seminars to study how the research in this field developed. Limitation of space forced us painfully to exclude many excellent, relevant papers, and the resulting choice reflects the interests of the editors. Since James Alan Yorke was born August 3, 1941, we chose to have this book commemorate his sixtieth birthday, honoring his research in this field. The editors are four of his collaborators. We would particularly like to thank Achi Dosanjh (senior editor math ematics), Elizabeth Young (assistant editor mathematics), Joel Ariaratnam (mathematics editorial), and Yong-Soon Hwang (book production editor) from Springer Verlag in New York for their efforts in publishing this book.
Strange Attractors
Author: William Sleator
Publisher:
ISBN: 9780749708795
Category : Time travel
Languages : en
Pages : 186
Book Description
Publisher:
ISBN: 9780749708795
Category : Time travel
Languages : en
Pages : 186
Book Description
Strange Attractors
Author: Harriett Hawkins
Publisher: Harvester/Wheatsheaf
ISBN:
Category : Literary Criticism
Languages : en
Pages : 208
Book Description
Publisher: Harvester/Wheatsheaf
ISBN:
Category : Literary Criticism
Languages : en
Pages : 208
Book Description
Chaos in Nature
Author: Christophe Letellier
Publisher: World Scientific
ISBN: 9814374423
Category : Mathematics
Languages : en
Pages : 393
Book Description
Chaos theory deals with the description of motion (in a general sense) which cannot be predicted in the long term although produced by deterministic system, as well exemplified by meteorological phenomena. It directly comes from the Lunar theory — a three-body problem — and the difficulty encountered by astronomers to accurately predict the long-term evolution of the Moon using “Newtonian” mechanics. Henri Poincaré's deep intuitions were at the origin of chaos theory. They also led the meteorologist Edward Lorenz to draw the first chaotic attractor ever published. But the main idea consists of plotting a curve representative of the system evolution rather than finding an analytical solution as commonly done in classical mechanics. Such a novel approach allows the description of population interactions and the solar activity as well. Using the original sources, the book draws on the history of the concepts underlying chaos theory from the 17th century to the last decade, and by various examples, show how general is this theory in a wide range of applications: meteorology, chemistry, populations, astrophysics, biomedicine, etc.
Publisher: World Scientific
ISBN: 9814374423
Category : Mathematics
Languages : en
Pages : 393
Book Description
Chaos theory deals with the description of motion (in a general sense) which cannot be predicted in the long term although produced by deterministic system, as well exemplified by meteorological phenomena. It directly comes from the Lunar theory — a three-body problem — and the difficulty encountered by astronomers to accurately predict the long-term evolution of the Moon using “Newtonian” mechanics. Henri Poincaré's deep intuitions were at the origin of chaos theory. They also led the meteorologist Edward Lorenz to draw the first chaotic attractor ever published. But the main idea consists of plotting a curve representative of the system evolution rather than finding an analytical solution as commonly done in classical mechanics. Such a novel approach allows the description of population interactions and the solar activity as well. Using the original sources, the book draws on the history of the concepts underlying chaos theory from the 17th century to the last decade, and by various examples, show how general is this theory in a wide range of applications: meteorology, chemistry, populations, astrophysics, biomedicine, etc.
High-Dimensional Chaotic and Attractor Systems
Author: Vladimir G. Ivancevic
Publisher: Intelligent Systems, Control and Automation: Science and Engineering
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 728
Book Description
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
Publisher: Intelligent Systems, Control and Automation: Science and Engineering
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 728
Book Description
This graduate–level textbook is devoted to understanding, prediction and control of high–dimensional chaotic and attractor systems of real life. The objective is to provide the serious reader with a serious scientific tool that will enable the actual performance of competitive research in high–dimensional chaotic and attractor dynamics. From introductory material on low-dimensional attractors and chaos, the text explores concepts including Poincaré’s 3-body problem, high-tech Josephson junctions, and more.
Chaotic Systems with Multistability and Hidden Attractors
Author: Xiong Wang
Publisher: Springer Nature
ISBN: 3030758214
Category : Technology & Engineering
Languages : en
Pages : 661
Book Description
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.
Publisher: Springer Nature
ISBN: 3030758214
Category : Technology & Engineering
Languages : en
Pages : 661
Book Description
This book presents a collection of new articles written by world-leading experts and active researchers to present their recent finding and progress in the new area of chaotic systems and dynamics, regarding emerging subjects of unconventional chaotic systems and their complex dynamics.It guide readers directly to the research front of the new scientific studies. This book is unique of its kind in the current literature, presenting broad scientific research topics including multistability and hidden attractors in unconventional chaotic systems, such as chaotic systems without equilibria, with only stable equilibria, with a curve or a surface of equilibria. The book describes many novel phenomena observed from chaotic systems, such as non-Shilnikov type chaos, coexistence of different types of attractors, and spontaneous symmetry breaking in chaotic systems. The book presents state-of-the-art scientific research progress in the field with both theoretical advances and potential applications. This book is suitable for all researchers and professionals in the areas of nonlinear dynamics and complex systems, including research professionals, physicists, applied mathematicians, computer scientists and, in particular, graduate students in related fields.
Attractors, Bifurcations, & Chaos
Author: Tönu Puu
Publisher: Springer Science & Business Media
ISBN: 3540246991
Category : Mathematics
Languages : en
Pages : 556
Book Description
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
Publisher: Springer Science & Business Media
ISBN: 3540246991
Category : Mathematics
Languages : en
Pages : 556
Book Description
Attractors, Bifurcations, & Chaos - now in its second edition - begins with an introduction to mathematical methods in modern nonlinear dynamics and deals with differential equations. Phenomena such as bifurcations and deterministic chaos are given considerable emphasis, both in the methodological part, and in the second part, containing various applications in economics and in regional science. Coexistence of attractors and the multiplicity of development paths in nonlinear systems are central topics. The applications focus on issues such as business cycles, oligopoly, interregional trade dynamics, and economic development theory.
Hyperbolic Chaos
Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318
Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318
Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.