Author: Edwin C. Kemble
Publisher:
ISBN: 9780486441535
Category : Science
Languages : en
Pages : 0
Book Description
Hailed by Linus Pauling as "excellent," thisgraduate-leveltreatment interweaves applications of theory with development of mathematical structure. Topics include wave packets, two-particle central-field problem, many-particle problem, much more. 1937 edition."
The Fundamental Principles of Quantum Mechanics
Author: Edwin C. Kemble
Publisher:
ISBN: 9780486441535
Category : Science
Languages : en
Pages : 0
Book Description
Hailed by Linus Pauling as "excellent," thisgraduate-leveltreatment interweaves applications of theory with development of mathematical structure. Topics include wave packets, two-particle central-field problem, many-particle problem, much more. 1937 edition."
Publisher:
ISBN: 9780486441535
Category : Science
Languages : en
Pages : 0
Book Description
Hailed by Linus Pauling as "excellent," thisgraduate-leveltreatment interweaves applications of theory with development of mathematical structure. Topics include wave packets, two-particle central-field problem, many-particle problem, much more. 1937 edition."
The Principles of Quantum Mechanics
Author: Paul Adrien Maurice Dirac
Publisher: Oxford University Press
ISBN: 9780198520115
Category : Science
Languages : en
Pages : 340
Book Description
The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
Publisher: Oxford University Press
ISBN: 9780198520115
Category : Science
Languages : en
Pages : 340
Book Description
The first edition of this work appeared in 1930, and its originality won it immediate recognition as a classic of modern physical theory. The fourth edition has been bought out to meet a continued demand. Some improvements have been made, the main one being the complete rewriting of the chapter on quantum electrodymanics, to bring in electron-pair creation. This makes it suitable as an introduction to recent works on quantum field theories.
Principles of Quantum Mechanics
Author: R. Shankar
Publisher: Springer Science & Business Media
ISBN: 147570576X
Category : Science
Languages : en
Pages : 676
Book Description
R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.
Publisher: Springer Science & Business Media
ISBN: 147570576X
Category : Science
Languages : en
Pages : 676
Book Description
R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.
Principles of Quantum Mechanics
Author: Donald D. Fitts
Publisher: Cambridge University Press
ISBN: 0521651247
Category : Science
Languages : en
Pages : 366
Book Description
This text presents a rigorous mathematical account of the principles of quantum mechanics, in particular as applied to chemistry and chemical physics. Applications are used as illustrations of the basic theory. The first two chapters serve as an introduction to quantum theory, although it is assumed that the reader has been exposed to elementary quantum mechanics as part of an undergraduate physical chemistry or atomic physics course. Following a discussion of wave motion leading to Schrödinger's wave mechanics, the postulates of quantum mechanics are presented along with essential mathematical concepts and techniques. The postulates are rigorously applied to the harmonic oscillator, angular momentum, the hydrogen atom, the variation method, perturbation theory, and nuclear motion. Modern theoretical concepts such as hermitian operators, Hilbert space, Dirac notation, and ladder operators are introduced and used throughout. This text is appropriate for beginning graduate students in chemistry, chemical physics, molecular physics and materials science.
Publisher: Cambridge University Press
ISBN: 0521651247
Category : Science
Languages : en
Pages : 366
Book Description
This text presents a rigorous mathematical account of the principles of quantum mechanics, in particular as applied to chemistry and chemical physics. Applications are used as illustrations of the basic theory. The first two chapters serve as an introduction to quantum theory, although it is assumed that the reader has been exposed to elementary quantum mechanics as part of an undergraduate physical chemistry or atomic physics course. Following a discussion of wave motion leading to Schrödinger's wave mechanics, the postulates of quantum mechanics are presented along with essential mathematical concepts and techniques. The postulates are rigorously applied to the harmonic oscillator, angular momentum, the hydrogen atom, the variation method, perturbation theory, and nuclear motion. Modern theoretical concepts such as hermitian operators, Hilbert space, Dirac notation, and ladder operators are introduced and used throughout. This text is appropriate for beginning graduate students in chemistry, chemical physics, molecular physics and materials science.
The Principles of Quantum Theory, From Planck's Quanta to the Higgs Boson
Author: Arkady Plotnitsky
Publisher: Springer
ISBN: 3319320688
Category : Science
Languages : en
Pages : 341
Book Description
The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in quantum field theory, which has been the frontier of quantum theory for quite a while now, and more recently, in quantum information theory, where principle thinking was given new prominence. The approach allows the book to develop a new understanding of both the history and philosophy of quantum theory, from Planck’s quantum to the Higgs boson, and beyond, and of the thinking the key founding figures, such as Einstein, Bohr, Heisenberg, Schrödinger, and Dirac, as well as some among more recent theorists. The book also extensively considers the nature of quantum probability, and contains a new interpretation of quantum mechanics, “the statistical Copenhagen interpretation.” Overall, the book’s argument is guided by what Heisenberg called “the spirit of Copenhagen,” which is defined by three great divorces from the preceding foundational thinking in physics—reality from realism, probability from causality, and locality from relativity—and defined the fundamental principles of quantum theory accordingly.
Publisher: Springer
ISBN: 3319320688
Category : Science
Languages : en
Pages : 341
Book Description
The book considers foundational thinking in quantum theory, focusing on the role the fundamental principles and principle thinking there, including thinking that leads to the invention of new principles, which is, the book contends, one of the ultimate achievements of theoretical thinking in physics and beyond. The focus on principles, prominent during the rise and in the immediate aftermath of quantum theory, has been uncommon in more recent discussions and debates concerning it. The book argues, however, that exploring the fundamental principles and principle thinking is exceptionally helpful in addressing the key issues at stake in quantum foundations and the seemingly interminable debates concerning them. Principle thinking led to major breakthroughs throughout the history of quantum theory, beginning with the old quantum theory and quantum mechanics, the first definitive quantum theory, which it remains within its proper (nonrelativistic) scope. It has, the book also argues, been equally important in quantum field theory, which has been the frontier of quantum theory for quite a while now, and more recently, in quantum information theory, where principle thinking was given new prominence. The approach allows the book to develop a new understanding of both the history and philosophy of quantum theory, from Planck’s quantum to the Higgs boson, and beyond, and of the thinking the key founding figures, such as Einstein, Bohr, Heisenberg, Schrödinger, and Dirac, as well as some among more recent theorists. The book also extensively considers the nature of quantum probability, and contains a new interpretation of quantum mechanics, “the statistical Copenhagen interpretation.” Overall, the book’s argument is guided by what Heisenberg called “the spirit of Copenhagen,” which is defined by three great divorces from the preceding foundational thinking in physics—reality from realism, probability from causality, and locality from relativity—and defined the fundamental principles of quantum theory accordingly.
Fundamentals of Quantum Mechanics
Author: James E. House
Publisher: Academic Press
ISBN: 0128092556
Category : Science
Languages : en
Pages : 374
Book Description
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected "real world topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest. - Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike - Presents results of quantum mechanical calculations that can be performed with readily available software - Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy - Problems given at the end of each chapter help students to master concepts
Publisher: Academic Press
ISBN: 0128092556
Category : Science
Languages : en
Pages : 374
Book Description
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models—including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom—are clearly and completely presented. Applications of these models to selected "real world topics are also included.This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest. - Accessible style and colorful illustrations make the content appropriate for professional researchers and students alike - Presents results of quantum mechanical calculations that can be performed with readily available software - Provides exceptionally clear discussions of spin-orbit coupling and group theory, and comprehensive coverage of barrier penetration (quantum mechanical tunneling) that touches upon hot topics, such as superconductivity and scanning tunneling microscopy - Problems given at the end of each chapter help students to master concepts
Physics for Computer Science Students
Author: Narciso Garcia
Publisher: Springer Science & Business Media
ISBN: 1468404210
Category : Science
Languages : en
Pages : 536
Book Description
This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks per semester. The lecture and recitation are complemented by a two-hour laboratory period per week for the first semester and a two-hour laboratory period biweekly for the second semester.
Publisher: Springer Science & Business Media
ISBN: 1468404210
Category : Science
Languages : en
Pages : 536
Book Description
This text is the product of several years' effort to develop a course to fill a specific educational gap. It is our belief that computer science students should know how a computer works, particularly in light of rapidly changing tech nologies. The text was designed for computer science students who have a calculus background but have not necessarily taken prior physics courses. However, it is clearly not limited to these students. Anyone who has had first-year physics can start with Chapter 17. This includes all science and engineering students who would like a survey course of the ideas, theories, and experiments that made our modern electronics age possible. This textbook is meant to be used in a two-semester sequence. Chapters 1 through 16 can be covered during the first semester, and Chapters 17 through 28 in the second semester. At Queens College, where preliminary drafts have been used, the material is presented in three lecture periods (50 minutes each) and one recitation period per week, 15 weeks per semester. The lecture and recitation are complemented by a two-hour laboratory period per week for the first semester and a two-hour laboratory period biweekly for the second semester.
The Physical Principles of the Quantum Theory
Author: Werner Heisenberg
Publisher: Courier Corporation
ISBN: 0486318419
Category : Science
Languages : en
Pages : 212
Book Description
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.
Publisher: Courier Corporation
ISBN: 0486318419
Category : Science
Languages : en
Pages : 212
Book Description
Nobel Laureate discusses quantum theory, uncertainty, wave mechanics, work of Dirac, Schroedinger, Compton, Einstein, others. "An authoritative statement of Heisenberg's views on this aspect of the quantum theory." — Nature.
General Principles of Quantum Mechanics
Author: Wolfgang Pauli
Publisher: Springer Science & Business Media
ISBN: 3642618405
Category : Science
Languages : en
Pages : 222
Book Description
I am very happy to accept the translators' invitation to write a few lines of introduction to this book. Of course, there is little need to explain the author. Pauli's first famous work, his article on the theory of relativity in the Encyklopädie der Mathematischen Wissenschaften was written at the age of twenty. He afterwards took part in the development of atomic physics from the still essentially classical picture of Bohr's early work to the true quantum mechanics. Thereafter, some of his work concerned the treatment of problems in the framework of the new theory, especially his paper on the hydrogen atom following the matrix method without recourse to Schrodinger's analytic form of the theory. His greatest achievement, the exclusion principle, generally known today under his own name as the Pauli principle, that governs the quantum theory of all problems including more than one electron, preceded the basic work of Heisenberg and Schrodinger, and brought him the Nobel prize. It includes the mathematical treatment of the spin by means of the now so well known Pauli matrices. In 1929, in a paper with Heisenberg, he laid the foundation of quantum electrodynamics and, in doing so, to the whole theory of quantized wave fields which was to become the via regia of access to elementary particle physics, since here for the first time processes of generation and annihilation of particles could be described for the case of the photons.
Publisher: Springer Science & Business Media
ISBN: 3642618405
Category : Science
Languages : en
Pages : 222
Book Description
I am very happy to accept the translators' invitation to write a few lines of introduction to this book. Of course, there is little need to explain the author. Pauli's first famous work, his article on the theory of relativity in the Encyklopädie der Mathematischen Wissenschaften was written at the age of twenty. He afterwards took part in the development of atomic physics from the still essentially classical picture of Bohr's early work to the true quantum mechanics. Thereafter, some of his work concerned the treatment of problems in the framework of the new theory, especially his paper on the hydrogen atom following the matrix method without recourse to Schrodinger's analytic form of the theory. His greatest achievement, the exclusion principle, generally known today under his own name as the Pauli principle, that governs the quantum theory of all problems including more than one electron, preceded the basic work of Heisenberg and Schrodinger, and brought him the Nobel prize. It includes the mathematical treatment of the spin by means of the now so well known Pauli matrices. In 1929, in a paper with Heisenberg, he laid the foundation of quantum electrodynamics and, in doing so, to the whole theory of quantized wave fields which was to become the via regia of access to elementary particle physics, since here for the first time processes of generation and annihilation of particles could be described for the case of the photons.
Quantum Physics for Scientists and Technologists
Author: Paul Sanghera
Publisher: John Wiley & Sons
ISBN: 0470922699
Category : Computers
Languages : en
Pages : 544
Book Description
Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. "Study Checkpoints" and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology.
Publisher: John Wiley & Sons
ISBN: 0470922699
Category : Computers
Languages : en
Pages : 544
Book Description
Quantum Physics for Scientists and Technologists is a self-contained, comprehensive review of this complex branch of science. The book demystifies difficult concepts and views the subject through non-physics fields such as computer science, biology, chemistry, and nanotechnology. It explains key concepts and phenomena in the language of non-physics majors and with simple math, assuming no prior knowledge of the topic. This cohesive book begins with the wavefunction to develop the basic principles of quantum mechanics such as the uncertainty principle and wave-particle duality. Comprehensive coverage of quantum theory is presented, supported by experimental results and explained through applications and examples without the use of abstract and complex mathematical tools or formalisms. From there, the book: Takes the mystery out of the Schrodinger equation, the fundamental equation of quantum physics, by applying it to atoms Shows how quantum mechanics explains the periodic table of elements Introduces the quantum mechanical concept of spin and spin quantum number, along with Pauli's Exclusion Principle regarding the occupation of quantum states Addresses quantum states of molecules in terms of rotation and vibration of diatomic molecules Explores the interface between classical statistical mechanics and quantum statistical mechanics Discusses quantum mechanics as a common thread through different fields of nanoscience and nanotechnology Each chapter features real-world applications of one or more quantum mechanics principles. "Study Checkpoints" and problems with solutions are presented throughout to make difficult concepts easy to understand. In addition, pictures, tables, and diagrams with full explanations are used to present data and further explain difficult concepts. This book is designed as a complete course in quantum mechanics for senior undergraduates and first-year graduate students in non-physics majors. It also applies to courses such as modern physics, physical chemistry and nanotechnology. The material is also accessible to scientists, engineers, and technologists working in the fields of computer science, biology, chemistry, engineering, and nanotechnology.