The Formation, Propagation and Stability of Self-Sustained Detonation Waves in Gaseous Mixtures, Condensed-Phase Explosives and Media With Hydraulic Resistance

The Formation, Propagation and Stability of Self-Sustained Detonation Waves in Gaseous Mixtures, Condensed-Phase Explosives and Media With Hydraulic Resistance PDF Author: Victor Gorshkov
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 924

Get Book Here

Book Description


Shock Waves Science and Technology Library, Vol. 6

Shock Waves Science and Technology Library, Vol. 6 PDF Author: F. Zhang
Publisher: Springer Science & Business Media
ISBN: 3642229670
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
This book, as a volume of the Shock Wave Science and Technology Reference Library, is primarily concerned with the fundamental theory of detonation physics in gaseous and condensed phase reactive media. The detonation process involves complex chemical reaction and fluid dynamics, accompanied by intricate effects of heat, light, electricity and magnetism - a contemporary research field that has found wide applications in propulsion and power, hazard prevention as well as military engineering. The seven extensive chapters contained in this volume are: - Chemical Equilibrium Detonation (S Bastea and LE Fried) - Steady One-Dimensional Detonations (A Higgins) - Detonation Instability (HD Ng and F Zhang) - Dynamic Parameters of Detonation (AA Vasiliev) - Multi-Scaled Cellular Detonation (D Desbordes and HN Presles) - Condensed Matter Detonation: Theory and Practice (C Tarver) - Theory of Detonation Shock Dynamics (JB Bdzil and DS Stewart) The chapters are thematically interrelated in a systematic descriptive approach, though, each chapter is self-contained and can be read independently from the others. It offers a timely reference of theoretical detonation physics for graduate students as well as professional scientists and engineers.

Toward Detonation Theory

Toward Detonation Theory PDF Author: Anatoly N. Dremin
Publisher: Springer Science & Business Media
ISBN: 1461205638
Category : Technology & Engineering
Languages : en
Pages : 163

Get Book Here

Book Description
It is known that the Chapman-Jouguet theory of detonation is based on the assumption of an instantaneous and complete transformation of explosives into detonation products in the wave front. Therefore, one should not expect from the theory any interpretations of the detonation limits, such as shock initiation of det onation and kinetic instability and propagation (failure diameter). The Zeldovich-Von Neuman-Doring (ZND) theory of detonation appeared, in fact, as a response to the need for a theory capable of interpreting such limits, and the ZND detonation theory gave qualitative interpretations to the detonation limits. These interpretations were based essentially on the theoretical notion that the mechanism of explosives transformation at detonation is a combustion of a layer of finite thickness of shock-compressed explosive behind the wave shock front with the velocity of the front. However, some experimental findings turned out to be inconsistent with the the ory. A very small change of homogeneous (liquid) explosives detonation velocity with explosive charge diameter near the rather sizable failure diameter is one of the findings. The elucidation of the nature of this finding has led to the discovery of a new phenomenon. This phenomenon has come to be known as the breakdown (BD) of the explosive self-ignition behind the front of shock waves under the effect of rarefaction waves.

Dynamic Structure of Detonation in Gaseous and Dispersed Media

Dynamic Structure of Detonation in Gaseous and Dispersed Media PDF Author: A.A. Borissov
Publisher: Springer Science & Business Media
ISBN: 9780792313403
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Of late the demands of industry in creating new composite and functional materials with present properties stimulated an increased interest to the investigation of processes which occur in the detonation technologies of complex chemical composition with an additive of disperse particles. The collection includes a series of papers presented at the 3d International Conference "Lavrentyev Readings on Mathematics, Mechanics, and Physics" (Novosibirsk, 1990),was held by the Hydrodynamics Institute under the support of the Presidium of the Siberian Branch of the USSR Academy of Sciences to stimulate the international cooperation of the leading international centers. In the framework of this Conference the Round Table seminar was held by Prof. A. Borissov and Prof. V. Mi trofanov devoted to "Dynamic Structure of Detonation in Gaseous and Dispersed Media". The idea to hold such Round Table was supported by Chairman of Organizing Committee academician Prof. V.Titov from Hydrodynamics Institute, and academician Prof. V. Nakoryakov and also his Institute of Thermophysics. The main ideas discussed at the Round Table were presented in the form of papers which reflected present situation of the problem of dynamic structure of the detonation waves in gaseous and dispersed media. The basic experimental facts concerning of complicated mul ti dimensional non-stationary structure both of the detonation wave and its front surface, generation of the cell structure, the effect of transverse waves, obstacles, channel geometry etc. on the transition from dynamic regime to stationary structure are represented in the fist three papers.

Shock Wave Science and Technology Reference Library, Vol.4

Shock Wave Science and Technology Reference Library, Vol.4 PDF Author: F. Zhang
Publisher: Springer Science & Business Media
ISBN: 3540884475
Category : Science
Languages : en
Pages : 407

Get Book Here

Book Description
The fourth of several volumes on solids in this series, the six extensive chapters here are more specifically concerned with detonation and shock compression waves in reactive heterogeneous media, including mixtures of solid, liquid and gas phases.

Detonation Shock and Ignition Dynamics in Condensed Phase Explosives

Detonation Shock and Ignition Dynamics in Condensed Phase Explosives PDF Author: Juan A. Saenz
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
We investigate the ignition and dynamics of detonation waves in condensed phase explosives using direct numerical simulations and asymptotic analysis. We develop a model to simulate deflagration to detonation transition in pentaerythritol tetranitrate powders. The model uses a continuum mechanics formulation of conservation laws for a mixture of solid reactants and gas products, written in terms of mixture quantities, plus two independent variables used to account for exothermic conversion of solid reactants into gas products, and compaction associated with pore collapse and grain rearrangement. We propose a simple empirical dependence of the reaction rate on the initial bed compaction that allows us to calibrate the model for a wide range of initial conditions. For the solid reactants we use a wide ranging equation of state. We suggest phenomenological closure relations, consistent with the limit of a compressible inert material and of a solid fully reactive material, such that the equation of state can be posed only in terms of mixture quantities and the reaction and compaction variables. We demonstrate the model's ability to capture deflagration to detonation transition in pentaerythritol tetranitrate powders by matching transients typically observed in experiments, through simulation. We develop an asymptotic formulation to calculate an intrinsic relation between the shock acceleration, velocity and curvature of self-sustained detonation waves in the limit of small time variation and small curvature of the lead shock front in condensed phase explosives. The formulation is developed in terms of a general, incomplete equation of state with composition variables to represent scalar quantities for a general range of phenomena. The results presented here are the first calculations obtained from asymptotic detonation shock dynamics relations for general material models. The formulation is a generalization of an asymptotic theory for a polytropic equation of state and a single step Arrhenius reaction rate model. We discuss the assumptions and justify the generalizations made that allow the use of general form incomplete equations of state. We test the proposed theory by calculating quasi-steady relations between detonation velocity and curvature and the dynamics of ignition events in a reactive hydrogen-oxygen mixture using an ideal equation of state and single step Arrhenius reaction rate model, and compare the results with those obtained using the original asymptotic theory. We find that quasi-steady relations between detonation velocity and curvature calculated using the proposed theory are in better agreement with numerical calculations than the original theory. We also use an equation of state that realistically represents condensed phase explosives, and two composition variables to track reaction and compaction processes, to perform calculations of quasi-steady relations between detonation velocity and curvature, detonation shock acceleration fields as a function of detonation velocity and curvature, and the dynamics of ignition events in solid PBX9501 and in PETN powders. We compare our results with numerical calculations of detonation shock dynamics and direct numerical simulations. We find that the time it takes an ignition wave to become quasi-steady is short, explaining why the quasi-steady relation between the detonation velocity and curvature can sometimes be a good approximation for a speed rule.

Detonation of Condensed Explosives

Detonation of Condensed Explosives PDF Author: Roger Cheret
Publisher: Springer Science & Business Media
ISBN: 1461392845
Category : Science
Languages : en
Pages : 442

Get Book Here

Book Description
This work marks a stage in the evolution of a scientific and technical field which has been developed by the Commissariat a l'Energie Atomique (CEA) over several decades. Many members of the staff of the CEA have won re nown in this field, and their work has brought it to the high degree of excel lence for which it is internationally recognized today. These scientists had to consider every aspect of the field, as it concerned: modeling, which has recourse to fluid thermodynamics, molecular phys ics, and chemistry; numerical evaluation, which relies on mathematical analysis and data processing; and experiments in the firing area, which require specific stress generators and instrumentation. Whilst this book is a testament to the activity and success of staff of the CEA, it also reviews a number ofthe advances made in the discipline. How ever, it is not intended to be an exhaustive account of those advances; it is assumed that the reader can, if desired, consult the standard monographs, and more recent, more specialized works (notably W.C. Davis and W. Fickett, and C.L. Mader). The history of the discipline is interesting in itself, and also as an illustra tion of the causes which lead to progress in a coherent body of scientific work. I should like to make some comments on this progress, of which there is a fascinating summary in the introduction, and which will figure largely throughout the work.

On the Chemical Energy Release in Self-sustaining Detonation Waves in Gaseous and Condensed Explosives

On the Chemical Energy Release in Self-sustaining Detonation Waves in Gaseous and Condensed Explosives PDF Author: Craig Mitchell Tarver
Publisher:
ISBN:
Category :
Languages : en
Pages : 286

Get Book Here

Book Description


The Detonation Phenomenon

The Detonation Phenomenon PDF Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 1139473204
Category : Technology & Engineering
Languages : en
Pages : 389

Get Book Here

Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.