Author: Joseph Ray
Publisher:
ISBN:
Category :
Languages : en
Pages : 402
Book Description
The Principles of Arithmetic ...
Author: Joseph Ray
Publisher:
ISBN:
Category :
Languages : en
Pages : 402
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 402
Book Description
Arithmetic
Author: William Seneca Sutton
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 296
Book Description
Publisher:
ISBN:
Category : Arithmetic
Languages : en
Pages : 296
Book Description
Fundamentals of High School Mathematics
Author: Harold Ordway Rugg
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 392
Book Description
The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
The Correspondence of Henrik Ibsen
Author: Henrik Ibsen
Publisher: Ardent Media
ISBN:
Category : Literary Collections
Languages : en
Pages : 468
Book Description
Excerpt from The Correspondence of Henrik Ibsen ON the 3lst of May 1880, Henrik Ibsen wrote to his publisher, Frederik Hegel, that he had begun a little book in which he intended to give some account of the outward and inward conditions under which each one of his works had come into being (letter It was to be called From Simian, to Rome, and was to give descriptions of his life at Skien and Grimstad, Bergen and Christiania, Dresden, Munich, and Rome. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Publisher: Ardent Media
ISBN:
Category : Literary Collections
Languages : en
Pages : 468
Book Description
Excerpt from The Correspondence of Henrik Ibsen ON the 3lst of May 1880, Henrik Ibsen wrote to his publisher, Frederik Hegel, that he had begun a little book in which he intended to give some account of the outward and inward conditions under which each one of his works had come into being (letter It was to be called From Simian, to Rome, and was to give descriptions of his life at Skien and Grimstad, Bergen and Christiania, Dresden, Munich, and Rome. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.
Geometric Measure Theory
Author: Herbert Federer
Publisher: Springer
ISBN: 3642620108
Category : Mathematics
Languages : en
Pages : 694
Book Description
"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)
Publisher: Springer
ISBN: 3642620108
Category : Mathematics
Languages : en
Pages : 694
Book Description
"This book is a major treatise in mathematics and is essential in the working library of the modern analyst." (Bulletin of the London Mathematical Society)
Mathematical Omnibus
Author: D. B. Fuks
Publisher: American Mathematical Soc.
ISBN: 0821843168
Category : Mathematics
Languages : en
Pages : 482
Book Description
The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.
Publisher: American Mathematical Soc.
ISBN: 0821843168
Category : Mathematics
Languages : en
Pages : 482
Book Description
The book consists of thirty lectures on diverse topics, covering much of the mathematical landscape rather than focusing on one area. The reader will learn numerous results that often belong to neither the standard undergraduate nor graduate curriculum and will discover connections between classical and contemporary ideas in algebra, combinatorics, geometry, and topology. The reader's effort will be rewarded in seeing the harmony of each subject. The common thread in the selected subjects is their illustration of the unity and beauty of mathematics. Most lectures contain exercises, and solutions or answers are given to selected exercises. A special feature of the book is an abundance of drawings (more than four hundred), artwork by an accomplished artist, and about a hundred portraits of mathematicians. Almost every lecture contains surprises for even the seasoned researcher.
Introduction to Cardinal Arithmetic
Author: Michael Holz
Publisher: Springer Science & Business Media
ISBN: 3034603274
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.
Publisher: Springer Science & Business Media
ISBN: 3034603274
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book is an introduction to modern cardinal arithmetic, developed in the frame of the axioms of Zermelo-Fraenkel set theory together with the axiom of choice. It splits into three parts. Part one, which is contained in Chapter 1, describes the classical cardinal arithmetic due to Bernstein, Cantor, Hausdorff, Konig, and Tarski. The results were found in the years between 1870 and 1930. Part two, which is Chapter 2, characterizes the development of cardinal arith metic in the seventies, which was led by Galvin, Hajnal, and Silver. The third part, contained in Chapters 3 to 9, presents the fundamental investigations in pcf-theory which has been developed by S. Shelah to answer the questions left open in the seventies. All theorems presented in Chapter 3 and Chapters 5 to 9 are due to Shelah, unless otherwise stated. We are greatly indebted to all those set theorists whose work we have tried to expound. Concerning the literature we owe very much to S. Shelah's book [Sh5] and to the article by M. R. Burke and M. Magidor [BM] which also initiated our students' interest for Shelah's pcf-theory.
I Want to Be a Mathematician: An Automathography
Author: Paul R. Halmos
Publisher: American Mathematical Soc.
ISBN: 1470459167
Category : Mathematics
Languages : en
Pages : 443
Book Description
Publisher: American Mathematical Soc.
ISBN: 1470459167
Category : Mathematics
Languages : en
Pages : 443
Book Description
Classical Mathematics from Al-Khwarizmi to Descartes
Author: Roshdi Rashed
Publisher: Routledge
ISBN: 1317622391
Category : History
Languages : en
Pages : 768
Book Description
This book follows the development of classical mathematics and the relation between work done in the Arab and Islamic worlds and that undertaken by the likes of Descartes and Fermat. ‘Early modern,’ mathematics is a term widely used to refer to the mathematics which developed in the West during the sixteenth and seventeenth century. For many historians and philosophers this is the watershed which marks a radical departure from ‘classical mathematics,’ to more modern mathematics; heralding the arrival of algebra, geometrical algebra, and the mathematics of the continuous. In this book, Roshdi Rashed demonstrates that ‘early modern,’ mathematics is actually far more composite than previously assumed, with each branch having different traceable origins which span the millennium. Going back to the beginning of these parts, the aim of this book is to identify the concepts and practices of key figures in their development, thereby presenting a fuller reality of these mathematics. This book will be of interest to students and scholars specialising in Islamic science and mathematics, as well as to those with an interest in the more general history of science and mathematics and the transmission of ideas and culture.
Publisher: Routledge
ISBN: 1317622391
Category : History
Languages : en
Pages : 768
Book Description
This book follows the development of classical mathematics and the relation between work done in the Arab and Islamic worlds and that undertaken by the likes of Descartes and Fermat. ‘Early modern,’ mathematics is a term widely used to refer to the mathematics which developed in the West during the sixteenth and seventeenth century. For many historians and philosophers this is the watershed which marks a radical departure from ‘classical mathematics,’ to more modern mathematics; heralding the arrival of algebra, geometrical algebra, and the mathematics of the continuous. In this book, Roshdi Rashed demonstrates that ‘early modern,’ mathematics is actually far more composite than previously assumed, with each branch having different traceable origins which span the millennium. Going back to the beginning of these parts, the aim of this book is to identify the concepts and practices of key figures in their development, thereby presenting a fuller reality of these mathematics. This book will be of interest to students and scholars specialising in Islamic science and mathematics, as well as to those with an interest in the more general history of science and mathematics and the transmission of ideas and culture.