Author: Sidney Luxton Loney
Publisher:
ISBN:
Category : Coordinates
Languages : en
Pages : 454
Book Description
The Elements of Coordinate Geometry
Author: Sidney Luxton Loney
Publisher:
ISBN:
Category : Coordinates
Languages : en
Pages : 454
Book Description
Publisher:
ISBN:
Category : Coordinates
Languages : en
Pages : 454
Book Description
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Elements of Algebraic Geometry; Lectures.
Author: Emil 1898-1962 Artin
Publisher: Hassell Street Press
ISBN: 9781019355763
Category :
Languages : en
Pages : 0
Book Description
This classic text offers a comprehensive introduction to the principles of algebraic geometry. Written by the legendary mathematician Emil Artin, it covers everything from the basics of algebraic equations to the modern tools of algebraic geometry. Whether you're a student of mathematics, a professional mathematician, or simply interested in the beauty and elegance of mathematical principles, this book is sure to captivate and inform you. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Publisher: Hassell Street Press
ISBN: 9781019355763
Category :
Languages : en
Pages : 0
Book Description
This classic text offers a comprehensive introduction to the principles of algebraic geometry. Written by the legendary mathematician Emil Artin, it covers everything from the basics of algebraic equations to the modern tools of algebraic geometry. Whether you're a student of mathematics, a professional mathematician, or simply interested in the beauty and elegance of mathematical principles, this book is sure to captivate and inform you. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Elements of Geometry
Author: S. Barnard
Publisher:
ISBN: 9781781830338
Category :
Languages : en
Pages : 450
Book Description
Key Features:* Euclid theorem given with substantive proofs.* Parallels and tangents are treated using Euclid methods.* Numerical arranged systematically from simple to more difficult.About the Book:This book contains all elements (including the parallel postulate and theaxioms) and the basic propositions of geometry. Details of Euclid'sdefinitions and its adaptation to explain various geometries have beenattempted thoroughly.
Publisher:
ISBN: 9781781830338
Category :
Languages : en
Pages : 450
Book Description
Key Features:* Euclid theorem given with substantive proofs.* Parallels and tangents are treated using Euclid methods.* Numerical arranged systematically from simple to more difficult.About the Book:This book contains all elements (including the parallel postulate and theaxioms) and the basic propositions of geometry. Details of Euclid'sdefinitions and its adaptation to explain various geometries have beenattempted thoroughly.
The Mathematicall Praeface to Elements of Geometrie of Euclid of Megara
Author: John Dee
Publisher: BoD – Books on Demand
ISBN: 3752315830
Category : Fiction
Languages : en
Pages : 86
Book Description
Reproduction of the original: The Mathematicall Praeface to Elements of Geometrie of Euclid of Megara by John Dee
Publisher: BoD – Books on Demand
ISBN: 3752315830
Category : Fiction
Languages : en
Pages : 86
Book Description
Reproduction of the original: The Mathematicall Praeface to Elements of Geometrie of Euclid of Megara by John Dee
Euclid's Elements in Greek
Author: Richard Fitzpatrick
Publisher: Lulu.com
ISBN: 1411680871
Category : Mathematics
Languages : en
Pages : 411
Book Description
Euclid's Elements is the most famous mathematical work of classical antiquity, and has had a profound influence on the development of modern Mathematics and Physics. This volume contains the definitive Ancient Greek text of J.L. Heiberg (1883), together with an English translation. For ease of use, the Greek text and the corresponding English text are on facing pages. Moreover, the figures are drawn with both Greek and English symbols. Finally, a helpful Greek/English lexicon explaining Ancient Greek mathematical jargon is appended. Volume II contains Books 5-9, and covers the fundamentals of proportion, similar figures, and number theory.
Publisher: Lulu.com
ISBN: 1411680871
Category : Mathematics
Languages : en
Pages : 411
Book Description
Euclid's Elements is the most famous mathematical work of classical antiquity, and has had a profound influence on the development of modern Mathematics and Physics. This volume contains the definitive Ancient Greek text of J.L. Heiberg (1883), together with an English translation. For ease of use, the Greek text and the corresponding English text are on facing pages. Moreover, the figures are drawn with both Greek and English symbols. Finally, a helpful Greek/English lexicon explaining Ancient Greek mathematical jargon is appended. Volume II contains Books 5-9, and covers the fundamentals of proportion, similar figures, and number theory.
Euclid's Elements of Geometry
Author: Euclid
Publisher:
ISBN:
Category :
Languages : en
Pages : 546
Book Description
EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
Publisher:
ISBN:
Category :
Languages : en
Pages : 546
Book Description
EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.
The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
Publisher: Read Books Ltd
ISBN: 1473395941
Category : History
Languages : en
Pages : 139
Book Description
This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.
The Thirteen Books of Euclid's Elements
Author: Euclid
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781546376675
Category :
Languages : en
Pages : 448
Book Description
Euclid's Elements is a mathematical and geometric treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt circa 300 BC. It is a collection of definitions, postulates (axioms), propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover Euclidean geometry and the ancient Greek version of elementary number theory. The work also includes an algebraic system that has become known as geometric algebra, which is powerful enough to solve many algebraic problems, including the problem of finding the square root of a number. Elements is the second-oldest extant Greek mathematical treatise after Autolycus' On the Moving Sphere, and it is the oldest extant axiomatic deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science. According to Proclus, the term "element" was used to describe a theorem that is all-pervading and helps furnishing proofs of many other theorems. The word 'element' in the Greek language is the same as 'letter'. This suggests that theorems in the Elements should be seen as standing in the same relation to geometry as letters to language. Later commentators give a slightly different meaning to the term element, emphasizing how the propositions have progressed in small steps, and continued to build on previous propositions in a well-defined order.
Euclid's Elements with Exercises Instructor's Copy
Author: Kathryn Goulding
Publisher:
ISBN: 9780692925959
Category :
Languages : en
Pages :
Book Description
The instructor's edition of Euclid's Elements With Exercises is intended as a guide for anyone teaching Euclid for the first time. Although it could be used by anyone, it was assembled and written with small schools or homeschooling groups in mind. In addition to containing the first six books in exactly the format of the student edition (also available on Amazon), the instructor's edition provides a concise overview of the course, including suggestions for conducting the class, a discussion of the organization of the material, brief comments on supplemental and memory work, and other details about which a new instructor might have questions. It also has notes for the teacher on each of the six books of the Elements, notes on selected exercises, and an appendix explaining the basics of formal reasoning, including an explanation of the converse and contrapositive of a statement and the concept of an indirect proof, which occurs early in Book I. The primary difference between this work and Euclid's Elements as it is usually presented (aside from the fact that there are some exercises), is that, while all of Books I - VI are included in the book, some propositions are omitted in the main body of the text (all omitted propositions are in Appendix A). This was done in order to be able to finish in two semesters all the plane geometry that would normally be covered in a modern geometry class. It should be noted, of course, that the flow of logic of the propositions is never interrupted. This book was not designed for the purist. Although it is pure Euclid and contains all of the first six books, it may offend the sensibilities of some who love Euclid (as the assembler/author does) to fail to place Book II in the expected flow of the main body of the text. For anyone not under a time constraint, or anyone moving quickly through the text, the author strongly recommends the inclusion of Book II in the course flow.
Publisher:
ISBN: 9780692925959
Category :
Languages : en
Pages :
Book Description
The instructor's edition of Euclid's Elements With Exercises is intended as a guide for anyone teaching Euclid for the first time. Although it could be used by anyone, it was assembled and written with small schools or homeschooling groups in mind. In addition to containing the first six books in exactly the format of the student edition (also available on Amazon), the instructor's edition provides a concise overview of the course, including suggestions for conducting the class, a discussion of the organization of the material, brief comments on supplemental and memory work, and other details about which a new instructor might have questions. It also has notes for the teacher on each of the six books of the Elements, notes on selected exercises, and an appendix explaining the basics of formal reasoning, including an explanation of the converse and contrapositive of a statement and the concept of an indirect proof, which occurs early in Book I. The primary difference between this work and Euclid's Elements as it is usually presented (aside from the fact that there are some exercises), is that, while all of Books I - VI are included in the book, some propositions are omitted in the main body of the text (all omitted propositions are in Appendix A). This was done in order to be able to finish in two semesters all the plane geometry that would normally be covered in a modern geometry class. It should be noted, of course, that the flow of logic of the propositions is never interrupted. This book was not designed for the purist. Although it is pure Euclid and contains all of the first six books, it may offend the sensibilities of some who love Euclid (as the assembler/author does) to fail to place Book II in the expected flow of the main body of the text. For anyone not under a time constraint, or anyone moving quickly through the text, the author strongly recommends the inclusion of Book II in the course flow.