Final Report on the Project Entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest

Final Report on the Project Entitled Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature pondero ...

Final Report on the Project Entitled "The Effects of Disturbance & Climate on Carbon Storage & the Exchanges of CO2 Water Vapor & Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest

Final Report on the Project Entitled Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned ~50,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature pondero ...

The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest

The Effects of Disturbance and Climate on Carbon Storage and the Exchanges of CO2 Water Vapor and Energy Exchange of Evergreen Coniferous Forests in the Pacific Northwest PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description
This is the final technical report containing a summary of all findings with regard to the following objectives of the project: (1) To quantify and understand the effects of wildfire on carbon storage and the exchanges of energy, CO2, and water vapor in a chronosequence of ponderosa pine (disturbance gradient); (2) To investigate the effects of seasonal and interannual variation in climate on carbon storage and the exchanges of energy, CO2, and water vapor in mature conifer forests in two climate zones: mesic 40-yr old Douglas-fir and semi-arid 60-yr old ponderosa pine (climate gradient); (3) To reduce uncertainty in estimates of CO2 feedbacks to the atmosphere by providing an improved model formulation for existing biosphere-atmosphere models; and (4) To provide high quality data for AmeriFlux and the NACP on micrometeorology, meteorology, and biology of these systems. Objective (1): A study integrating satellite remote sensing, AmeriFlux data, and field surveys in a simulation modeling framework estimated that the pyrogenic carbon emissions, tree mortality, and net carbon exchange associated with four large wildfires that burned 5̃0,000 hectares in 2002-2003 were equivalent to 2.4% of Oregon statewide anthropogenic carbon emissions over the same two-year period. Most emissions were from the combustion of the forest floor and understory vegetation, and only about 1% of live tree mass was combusted on average. Objective (2): A study of multi-year flux records across a chronosequence of ponderosa pine forests yielded that the net carbon uptake is over three times greater at a mature pine forest compared with young pine. The larger leaf area and wetter and cooler soils of the mature forest mainly caused this effect. A study analyzing seven years of carbon and water dynamics showed that interannual and seasonal variability of net carbon exchange was primarily related to variability in growing season length, which was a linear function of plant-available soil moisture in spring and early summer. A multi-year drought (2001-2003) led to a significant reduction of net ecosystem exchange due to carry-over effects in soil moisture and carbohydrate reserves in plant-tissue. In the same forest, the interannual variability in the rate carbon is lost from the soil and forest floor is considerable and related to the variability in tree growth as much as it is to variability in soil climatic conditions. Objective (3): Flux data from the mature ponderosa pine site support a physical basis for filtering nighttime data with friction velocity above the canopy. An analysis of wind fields and heat transport in the subcanopy at the mesic 40-year old Douglas site yielded that the non-linear structure and behavior of spatial temperature gradients and the flow field require enhanced sensor networks to estimate advective fluxes in the subcanopy of forest to close the surface energy balance in forests. Reliable estimates for flux uncertainties are needed to improve model validation and data assimilation in process-based carbon models, inverse modeling studies and model-data synthesis, where the uncertainties may be as important as the fluxes themselves. An analysis of the time scale dependence of the random and flux sampling error yielded that the additional flux obtained by increasing the perturbation timescale beyond about 10 minutes is dominated by random sampling error, and therefore little confidence can be placed in its value. Artificial correlation between gross ecosystem productivity (GEP) and ecosystem respiration (Re) is a consequence of flux partitioning of eddy covariance flux data when GEP is computed as the difference between NEE and computed daytime Re (e.g. using nighttime Re extrapolated into daytime using soil or air temperatures). Tower-data must be adequately spatially averaged before comparison to gridded model output as the time variability of both is inherently different. The eddy-covariance data collected at the mature pondero...

Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest

Measuring the Effects of Disturbance & Climate on the CO2 & Energy Exchange of Ponderosa Pine Forests in the Pacific Northwest PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 69

Get Book Here

Book Description
The goal is to quantify and understand the influence of climate and disturbance on ecosystem processes and thus net carbon uptake by forests. The objective is to combine tower and ground-based observations to quantify the effects of disturbance on processes controlling carbon storage and CO2 and energy exchange in varying climatic conditions. Specific objectives are: (1) Investigate the effects of logging and fire on carbon storage and carbon dioxide and energy exchange in chronosequences of ponderosa pine, using consistent methodology; (2) Determine key environmental factors controlling carbon storage and carbon dioxide and energy exchange in these forests through a combination of measurements and process modeling; and (3) Assess spatial variation of the concentrations and transport in complex terrain. The eddy covariance method is used for measurements of CO2, water vapor, and energy exchanges in a chronosequence of ponderosa pine forests (burned in 2002 wildfire, 10 year-old stand, 90 year-old mature stand). The mature stand has been an AmeriFlux site since 2000 (following previous flux sites in young and old stands initiated in 1996). In addition to the eddy covariance measurements, a large suite of biological processes and ecosystem properties are determined for the purpose of developing independent forest carbon budgets and NEP estimates; these include photosynthesis, stand respiration, soil CO2 fluxes, annual litterfall, foliar chemistry, and bole increment, and soil organic matter among other parameters. The measurements are being integrated and evaluated with two ecosystem models (BIOME-BGC and SPA). Such analyses are needed to assess regional terrestrial ecosystem carbon budgets. The results will contribute scientific understanding of carbon processes, and will provide comprehensive data sets for forest managers and those preparing national carbon inventories to use in assessments of carbon sequestration in relation to interannual climate variation and disturbance. Frameworks and methodologies developed by the PI will contribute to AmeriFlux Network facility functions for data acquisition, exchange and modeling of results in a broad spectrum of carbon cycle research.

Carbon Storage in a Pacific Northwest Conifer Forest Ecosystem

Carbon Storage in a Pacific Northwest Conifer Forest Ecosystem PDF Author: Jack E. Janisch
Publisher:
ISBN:
Category : Carbon cycle (Biogeochemistry)
Languages : en
Pages : 340

Get Book Here

Book Description
As concern over global warming intensifies, sequestration and storage of atmospheric CO2 has become an important scientific and policy issue. Confusion persists, however, over interpretation of forest carbon (C) source-sink dynamics, in part because conclusions drawn depend on temporal and spatial scales of analysis (e.g. day-week scale vs. successional-scale), type of disturbance, and methodology (e.g. massbased vs. flux-based). There is a need to resolve this confusion given that strategies for mitigating anthropogenic CO2 emissions are based on estimates of forest C fluxes during various stages of succession, over which C fluxes and stores may change. Empirical study of changes in forest C stores can help to resolve this confusion by clarifying the C sources-sink dynamics of forests in space and time. To better understand the impacts of disturbance on C source-sink dynamics, changes in C stores of an evergreen-dominated forest on the Wind River Ranger District in Southwestern Washington, U.S.A., were investigated along a 500-year chronosequence of 36 stands. Principle objectives were to evaluate 1) decomposition rates (k) of logs, stumps, and below-ground coarse roots, 2) net primary productivity (NPP) of dominant tree species' boles at the stand level, and 3) successional changes in net ecosystem productivity (NEP) for live trees and coarse woody debris (CWD), here called NEPW. In the case of decomposition, log and stump k values did not differ significantly within the two principle species studied, indicating substitution of log k values for stump k values in models of forest C budgets may be valid when stump decomposition data is lacking. Decomposition rates between species differed, with Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) decomposing more slowly (k = 0.013 yr-1) relative to western hemlock (Tsuga heterophylla (Rafi) Sarg. (k = 0.036 yr-1). This difference in k between species was observed for both above-ground stumps and logs as well as below-ground coarse roots. Given our mean k estimates and adjusting for regenerating stand age, these stands are losing C at a rate of 0.16-0.83 Mg C ha-1 yr-1 (assuming all CWD is P. menziesii) to 0.13-1.68 Mg C ha-1 yr-1 (assuming all CWD is T. heterophylla) from stumps, logs, and snags. Including coarse roots increases these losses to 0.28-1.25 Mg C ha-1 yr-1 and 0.30-2.53 Mg C ha-1 yr-1, respectively. Based on these findings, if fragmentation of these decomposing C pools is ignored, and fragmented fractions have oxidized to CO2, stands thought to be net C sinks could in reality be net C sources to the atmosphere. Net primary production in tree boles (NPPb) of regenerating stands (so called second-growth) ranged between 0.15-5.28 Mg C ha-1 yr-1. NPPb of 500-year old stands ranged between 1.3-3.9 Mg C ha-1 yr-1, similar to NPPb of boles in 20-25 year old secondgrowth. Mean radial increment widths from old-growth stands indicated that NPPb of these stands (neglecting mortality) can increase, decrease, or remain relatively constant. Based on 5-year increments for the previous fifteen years, the majority of old-growth stands sampled showed small increases in radial growth over time. Timing of the transition from negative to positive of NEPW ranged between 0 and 57 years after disturbance and depended strongly on live-tree growth rates as well as the fate of CWD and harvested wood. Estimated maximum and minimum NEPW were 3.9 Mg C ha-1 yr-1 and 14.1 Mg C ha-1 yr-1, respectively. Maximum mean C stores of 393 Mg C ha-1 were reached approximately 200 years after disturbance. At a rotation age of 80 years, regenerating stands stored approximately 50% as much C in woody biomass as a 500-year old primary forest, indicating conversion of older forests to plantations released C to the atmosphere. Given the high biomass of mature and old-growth stands relative to younger regenerating stands in the forest studied, landscape C stores in live wood would appear to be maximized in stands of older age classes.

The Greenhouse Effect, Climate Change, and U.S. Forests

The Greenhouse Effect, Climate Change, and U.S. Forests PDF Author: William E. Shands
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 324

Get Book Here

Book Description


Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems

Disturbance Effects on Soil Carbon and Greenhouse Gas Emissions in Forest Ecosystems PDF Author: Scott X. Chang
Publisher: MDPI
ISBN: 3039286668
Category : Science
Languages : en
Pages : 232

Get Book Here

Book Description
Forest ecosystems are often disturbed by agents such as harvesting, fire, wind, insects and diseases, and acid deposition, with differing intensities and frequencies. Such disturbances can markedly affect the amount, form, and stability of soil organic carbon in, and the emission of greenhouse gases, including CO2, CH4, and N2O from, forest ecosystems. It is vitally important that we improve our understanding of the impact of different disturbance regimes on forest soil carbon dynamics and greenhouse gas emissions to guide our future research, forest management practices, and policy development. This Special Issue provides an important update on the disturbance effects on soil carbon and greenhouse gas emissions in forest ecosystems in different climate regions.

Carbon Storage and Accumulation in United States Forest Ecosystems

Carbon Storage and Accumulation in United States Forest Ecosystems PDF Author: Richard A. Birdsey
Publisher:
ISBN:
Category : Atmospheric carbon dioxide
Languages : en
Pages : 64

Get Book Here

Book Description


The Impact of Disturbance on Carbon Stores and Dynamics in Forests of Coastal Alaska

The Impact of Disturbance on Carbon Stores and Dynamics in Forests of Coastal Alaska PDF Author: Mikhail A. Yatskov
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 223

Get Book Here

Book Description
Changes in climate caused by increased concentrations of carbon dioxide (CO2) in the Earth’s atmosphere have led land and ocean surface temperatures to increase by 0.85°C and sea level to increase by 19 cm relative to preindustrial times. Global climate change will lead to further alterations in mean temperature and precipitation, as well as their extremes that are likely to influence disturbance regimes. Disturbance play an important role in forest dynamics and succession, by influencing forest ecosystems structure and function, reorganizing forests by reducing live and increasing dead matter, and thus affecting ecosystem carbon (C) balances. Under a changing climate disturbances are likely to cause widespread tree mortality across forested landscapes, creating vast amounts of coarse woody debris (CWD) that will emit C to the atmosphere to a degree that regional C balances and future C dynamics are likely to change. C balance of forested regions depends on inputs in form of C sequestered by live components during growth and outputs in form of C emitted from dead components through decomposition and combustion. Live trees in many forest ecosystems represent the largest aboveground C pool and the dynamics of this pool, as controlled by growth and mortality, have been extensively studied. In contrast, few have examined either the post-disturbance fate of CWD C or assessed C storage potential of salvaged biomass despite the occurrence of multiple recent large-scale disturbance events. Biomass and C stores and their uncertainty were estimated in the Temperate and the Boreal ecoregions of Coastal Alaska using the empirical data from the Forest Inventory and Analysis (FIA) program, literature data, and modeling using standard methods employed by the FIA program. The average aboveground woody live (218.9±4.6 Mg/ha) and log (28.1±1.8 Mg/ha) biomass in the Temperate ecoregion were among the lowest in the Pacific Northwest, whereas snag biomass (30.5±1.0 Mg/ha) was among the highest. In the Boreal ecoregion, CWD biomass comprised almost 50% of the regional aboveground woody store (76.7±3.8 Mg/ha) with bark beetle damaged stands containing 82% of the total CWD biomass. In contrast, in the Temperate ecoregion, CWD comprised 20% of the regional aboveground woody store (277.5 ±5.4 Mg/ha) with 76% of total CWD biomass in undisturbed stands. Total C stores estimates in Coastal Alaska ranged between 1523.6 and 1892.8 Tg with the highest contribution from soils and the largest potential reductions in uncertainty related to the tree and soils C pools. The impact of a large-scale spruce bark beetle (SBB) outbreak on aboveground dead wood C dynamics on the Kenai Peninsula was modeled utilizing data from the FIA program and CWD decomposition rate-constants from a chronosequence and decomposition-vectors analysis. Decomposition rate-constants from the chronosequence ranged between -0.015 yr−1 and -0.022 yr−1 for logs and -0.003 yr−1 and +0.002 yr−1 for snags. Decomposition rate-constants from the decomposition-vectors ranged between -0.045 yr−1 and +0.003 yr−1 among decomposition phases and -0.048 yr−1 and +0.006 yr−1 among decay classes. Relative to log generating disturbances those creating snags delayed C flux from CWD to the atmosphere, produced a smaller magnitude C flux, and had the potential to store 10% to 66% more C in a disturbed system over time. The effect of several management strategies ranging from "leave-as-is" to "salvage-and-utilization" on C stores and emissions following SBB outbreak on Kenai Peninsula, Alaska was evaluated. A forest with immediate post-disturbance regeneration reached pre-disturbance C stores faster than one with delayed regeneration. Lack of regeneration, representing a loss of tree cover on the disturbed portion of the landscape, caused a permanent decrease in wood C stores. Among the "salvage-and-utilization" scenarios considered, biomass fuel production with substitution for fossil fuels created the largest long-term C storage assuming the substitution was permanent. Given that reduction in near-term emissions may be a more robust strategy than long-term ones, the "leave-as-is" scenarios may represent the most feasible way to mitigate global climate change following disturbance.

Analysis of the Regional Carbon Balance of Pacific Northwest Forests Under Changing Climate, Disturbance, and Management for Bioenergy

Analysis of the Regional Carbon Balance of Pacific Northwest Forests Under Changing Climate, Disturbance, and Management for Bioenergy PDF Author: Tara W. Hudiburg
Publisher:
ISBN:
Category : Biomass energy
Languages : en
Pages : 172

Get Book Here

Book Description
Atmospheric carbon dioxide levels have been steadily increasing from anthropogenic energy production, development and use. Carbon cycling in the terrestrial biosphere, particularly forest ecosystems, has an important role in regulating atmospheric concentrations of carbon dioxide. US West coast forest management policies are being developed to implement forest bioenergy production while reducing risk of catastrophic wildfire. Modeling and understanding the response of terrestrial ecosystems to changing environmental conditions associated with energy production and use are primary goals of global change science. Coupled carbon-nitrogen ecosystem process models identify and predict important factors that govern long term changes in terrestrial carbon stores or net ecosystem production (NEP). By quantifying and reducing uncertainty in model estimates using existing datasets, this research provides a solid scientific foundation for evaluating carbon dynamics under conditions of future climate change and land management practices at local and regional scales. Through the combined use of field observations, remote sensing data products, and the NCAR CESM/CLM4-CN coupled carbon-climate model, the objectives of this project were to 1) determine the interactive effects of changing environmental factors (i.e. increased CO2, nitrogen deposition, warming) on net carbon uptake in temperate forest ecosystems and 2) predict the net carbon emissions of West Coast forests under future climate scenarios and implementation of bioenergy programs. West Coast forests were found to be a current strong carbon sink after accounting for removals from harvest and fire. Net biome production (NBP) was 26 ± 3 Tg C yr−1, an amount equal to 18% of Washington, Oregon, and California fossil fuel emissions combined. Modeling of future conditions showed increased net primary production (NPP) because of climate and CO2 fertilization, but was eventually limited by nitrogen availability, while heterotrophic respiration (R[subscript h]) continued to increase, leading to little change in net ecosystem production (NEP). After accounting for harvest removals, management strategies which increased harvest compared to business-as-usual (BAU) resulted in decreased NBP. Increased harvest activity for bioenergy did not reduce short- or long-term emissions to the atmosphere regardless of the treatment intensity or product use. By the end of the 21st century, the carbon accumulated in forest regrowth and wood product sinks combined with avoided emissions from fossil fuels and fire were insufficient to offset the carbon lost from harvest removals, decomposition of wood products, associated harvest/transport/manufacturing emissions, and bioenergy combustion emissions. The only scenario that reduced carbon emissions compared to BAU over the 90 year period was a 'No Harvest' scenario where NBP was significantly higher than BAU for most of the simulation period. Current and future changes to baseline conditions that weaken the forest carbon sink may result in no change to emissions in some forest types.

Forests, Carbon and Climate Change

Forests, Carbon and Climate Change PDF Author:
Publisher:
ISBN:
Category : Carbon dioxide
Languages : en
Pages : 196

Get Book Here

Book Description