The Dirichlet Problem for Parabolic Operators with Singular Drift Terms

The Dirichlet Problem for Parabolic Operators with Singular Drift Terms PDF Author: Steve Hofmann
Publisher: American Mathematical Soc.
ISBN: 0821826840
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
This memoir considers the Dirichlet problem for parabolic operators in a half space with singular drift terms. Chapter I begins the study of a parabolic PDE modelled on the pullback of the heat equation in certain time varying domains considered by Lewis-Murray and Hofmann-Lewis. Chapter II obtains mutual absolute continuity of parabolic measure and Lebesgue measure on the boundary of this halfspace and also that the $L DEGREESq(R DEGREESn)$ Dirichlet problem for these PDEs has a solution when $q$ is large enough. Chapter III proves an analogue of a theorem of Fefferman, Kenig, and Pipher for certain parabolic PDEs with singular drift terms. Each of the chapters that comprise this memoir has its own numbering system and list

The Dirichlet Problem for Parabolic Operators with Singular Drift Terms

The Dirichlet Problem for Parabolic Operators with Singular Drift Terms PDF Author: Steve Hofmann
Publisher: American Mathematical Soc.
ISBN: 0821826840
Category : Mathematics
Languages : en
Pages : 129

Get Book Here

Book Description
This memoir considers the Dirichlet problem for parabolic operators in a half space with singular drift terms. Chapter I begins the study of a parabolic PDE modelled on the pullback of the heat equation in certain time varying domains considered by Lewis-Murray and Hofmann-Lewis. Chapter II obtains mutual absolute continuity of parabolic measure and Lebesgue measure on the boundary of this halfspace and also that the $L DEGREESq(R DEGREESn)$ Dirichlet problem for these PDEs has a solution when $q$ is large enough. Chapter III proves an analogue of a theorem of Fefferman, Kenig, and Pipher for certain parabolic PDEs with singular drift terms. Each of the chapters that comprise this memoir has its own numbering system and list

Smooth Molecular Decompositions of Functions and Singular Integral Operators

Smooth Molecular Decompositions of Functions and Singular Integral Operators PDF Author: John E. Gilbert
Publisher: American Mathematical Soc.
ISBN: 0821827723
Category : Mathematics
Languages : en
Pages : 89

Get Book Here

Book Description
Under minimal assumptions on a function $\psi$ the authors obtain wavelet-type frames of the form $\psi_{j, k}(x) = r DEGREES{(1/2)n j} \psi(r DEGREESj x - sk), j \in \integer, k \in \integer DEGREESn, $ for some $r > 1$ and $s > 0$. This collection is shown to be a frame for a scale of Triebel-Lizorkin spaces (which includes Lebesgue, Sobolev and Hardy spaces) and the reproducing formula converges in norm as well as pointwise a.e. The construction follows from a characterization of those operators which are bounded on a space of smooth molecules. This characterization also allows us to decompose a broad range of singular integral operators in ter

Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion

Approximation and Entropy Numbers of Volterra Operators with Application to Brownian Motion PDF Author: Mikhail Anatolʹevich Lifshit︠s︡
Publisher: American Mathematical Soc.
ISBN: 082182791X
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
This text considers a specific Volterra integral operator and investigates its degree of compactness in terms of properties of certain kernel functions. In particular, under certain optimal integrability conditions the entropy numbers $e_n(T_{\rho, \psi})$ satisfy $c_1\norm{\rho\psi}_r0$.

Elliptic Partial Differential Operators and Symplectic Algebra

Elliptic Partial Differential Operators and Symplectic Algebra PDF Author: William Norrie Everitt
Publisher: American Mathematical Soc.
ISBN: 0821832352
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This investigation introduces a new description and classification for the set of all self-adjoint operators (not just those defined by differential boundary conditions) which are generated by a linear elliptic partial differential expression $A(\mathbf{x}, D)=\sum_{0\, \leq\, \left s\right \, \leq\,2m}a_{s} (\mathbf{x})D DEGREES{s}\;\text{for all}\;\mathbf{x}\in\Omega$ in a region $\Omega$, with compact closure $\overline{\Omega}$ and $C DEGREES{\infty }$-smooth boundary $\partial\Omega$, in Euclidean space $\mathbb{E} DEGREES{r}$ $(r\geq2).$ The order $2m\geq2$ and the spatial dimensio

Sub-Laplacians with Drift on Lie Groups of Polynomial Volume Growth

Sub-Laplacians with Drift on Lie Groups of Polynomial Volume Growth PDF Author: Georgios K. Alexopoulos
Publisher: American Mathematical Soc.
ISBN: 0821827642
Category : Mathematics
Languages : en
Pages : 119

Get Book Here

Book Description
This work is intended for graduate students and research mathematicians interested in topological groups, Lie groups, and harmonic analysis.

Singular Quasilinearity and Higher Eigenvalues

Singular Quasilinearity and Higher Eigenvalues PDF Author: Victor Lenard Shapiro
Publisher: American Mathematical Soc.
ISBN: 0821827170
Category : Mathematics
Languages : en
Pages : 191

Get Book Here

Book Description
This book is intended for graduate students and research mathematicians interested in partial differential equations.

Basic Global Relative Invariants for Homogeneous Linear Differential Equations

Basic Global Relative Invariants for Homogeneous Linear Differential Equations PDF Author: Roger Chalkley
Publisher: American Mathematical Soc.
ISBN: 0821827812
Category : Mathematics
Languages : en
Pages : 223

Get Book Here

Book Description
Given any fixed integer $m \ge 3$, the author presents simple formulas for $m - 2$ algebraically independent polynomials over $\mathbb{Q}$ having the remarkable property, with respect to transformations of homogeneous linear differential equations of order $m$, that each polynomial is both a semi-invariant of the first kind (with respect to changes of the dependent variable) and a semi-invariant of the second kind (with respect to changes of the independent variable). These relative invariants are suitable for global studies in several different contexts and do not require Laguerre-Forsyth reductions for their evaluation. In contrast, all of the general formulas for basic relative invariants that have been proposed by other researchers during the last 113 years are merely local ones that are either much too complicated or require a Laguerre-Forsyth reduction for each evaluation.

Spectral Decomposition of a Covering of $GL(r)$: the Borel case

Spectral Decomposition of a Covering of $GL(r)$: the Borel case PDF Author: Heng Sun
Publisher: American Mathematical Soc.
ISBN: 0821827758
Category : Mathematics
Languages : en
Pages : 79

Get Book Here

Book Description
Let $F$ be a number field and ${\bf A}$ the ring of adeles over $F$. Suppose $\overline{G({\bf A})}$ is a metaplectic cover of $G({\bf A})=GL(r, {\bf A})$ which is given by the $n$-th Hilbert symbol on ${\bf A}$

Almost Commuting Elements in Compact Lie Groups

Almost Commuting Elements in Compact Lie Groups PDF Author: Armand Borel
Publisher: American Mathematical Soc.
ISBN: 0821827928
Category : Mathematics
Languages : en
Pages : 153

Get Book Here

Book Description
This text describes the components of the moduli space of conjugacy classes of commuting pairs and triples of elements in a compact Lie group. This description is in the extended Dynkin diagram of the simply connected cover, together with the co-root integers and the action of the fundamental group. In the case of three commuting elements, we compute Chern-Simons invariants associated to the corresponding flat bundles over the three-torus, and verify a conjecture of Witten which reveals a surprising symmetry involving the Chern-Simons invariants and the dimensions of the components of the moduli space.

Some Generalized Kac-Moody Algebras with Known Root Multiplicities

Some Generalized Kac-Moody Algebras with Known Root Multiplicities PDF Author: Peter Niemann
Publisher: American Mathematical Soc.
ISBN: 0821828886
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
Starting from Borcherds' fake monster Lie algebra, this text construct a sequence of six generalized Kac-Moody algebras whose denominator formulas, root systems and all root multiplicities can be described explicitly. The root systems decompose space into convex holes, of finite and affine type, similar to the situation in the case of the Leech lattice. As a corollary, we obtain strong upper bounds for the root multiplicities of a number of hyperbolic Lie algebras, including $AE_3$.