Non-Equilibrium Air Plasmas at Atmospheric Pressure

Non-Equilibrium Air Plasmas at Atmospheric Pressure PDF Author: K.H. Becker
Publisher: CRC Press
ISBN: 1482269120
Category : Science
Languages : en
Pages : 701

Get Book Here

Book Description
Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressu

Non-Equilibrium Air Plasmas at Atmospheric Pressure

Non-Equilibrium Air Plasmas at Atmospheric Pressure PDF Author: K.H. Becker
Publisher: CRC Press
ISBN: 1482269120
Category : Science
Languages : en
Pages : 701

Get Book Here

Book Description
Atmospheric-pressure plasmas continue to attract considerable research interest due to their diverse applications, including high power lasers, opening switches, novel plasma processing applications and sputtering, EM absorbers and reflectors, remediation of gaseous pollutants, excimer lamps, and other noncoherent light sources. Atmospheric-pressu

Nonequilibrium Atmospheric Pressure Plasma Jets

Nonequilibrium Atmospheric Pressure Plasma Jets PDF Author: XinPei Lu
Publisher: CRC Press
ISBN: 0429620721
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
Nonequilibrium atmospheric pressure plasma jets (N-APPJs) generate plasma in open space rather than in a confined chamber and can be utilized for applications in medicine. This book provides a complete introduction to this fast-emerging field, from the fundamental physics, to experimental approaches, to plasma and reactive species diagnostics. It provides an overview of the development of a wide range of plasma jet devices and their fundamental mechanisms. The book concludes with a discussion of the exciting application of plasmas for cancer treatment. The book provides details on experimental methods including expert tips and caveats. covers novel devices driven by various power sources and the impact of operating conditions on concentrations and fluxes of the reactive species. discusses the latest advances including theory, modeling, and simulation approaches. gives an introduction, overview and details on state of the art diagnostics of small scale high gradient atmospheric pressure plasmas. covers the use of N-APPJs for cancer applications, including discussion of destruction of cancer cells, mechanisms of action, and selectivity studies. XinPei Lu is a Chair Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology. Stephan Reuter is currently Visiting Professor at Université Paris-Saclay. In a recent Alexander von Humboldt research fellowship at Princeton University, he performed ultrafast laser spectroscopy on cold plasmas. Mounir Laroussi is Professor of Electrical and Computer Engineering and director of the Plasma Engineering and Medicine Institute at Old Dominion University. He is a Fellow of IEEE and recipient of an IEEE Merit Award. DaWei Liu is Professor in the School of Electrical and Electronic Engineering at Huazhong University of Science and Technology.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704

Get Book Here

Book Description


Plasma Processing of Nanomaterials

Plasma Processing of Nanomaterials PDF Author: R. Mohan Sankaran
Publisher: CRC Press
ISBN: 1439866775
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Low-Temperature Plasma for Biomedical Applications

Low-Temperature Plasma for Biomedical Applications PDF Author: Mounir Laroussi
Publisher: Frontiers Media SA
ISBN: 2832538746
Category : Science
Languages : en
Pages : 134

Get Book Here

Book Description
Low-temperature plasmas (LTP) at atmospheric gas pressure play an increasing role in biomedical applications. The experimentally observed benefits of LTP for these applications are attributed to the controllable fluxes of chemically active species that can be produced in air at near room temperatures and delivered to bio-matter to induce desired effects. Recent research on the biomedical applications of LTP has generated new scientific knowledge regarding the interaction of plasma with soft matter including cells, tissues, seeds, and plants. The observed effects of LTP on biological cells are mediated by the plasma-produced reactive oxygen species (ROS) and reactive nitrogen species (RNS). These include hydroxyl, OH, atomic oxygen, O, singlet delta oxygen, O2(1Δ), superoxide, O2-, hydrogen peroxide, H2O2, and nitric oxide, NO. Some of these species are known to play important roles in biology serving as signaling molecules in living organisms. When they come in contact with biological cells these species interact with the lipids and proteins of the cell membrane, enter the cell and increase the intracellular ROS concentrations, which can lead to DNA damage and may compromise the integrity of other cell organelles. ROS and RNS can also trigger cell signaling pathways, which can lead to cellular death by apoptosis or necrosis. Other plasma-generated agents that could play biological roles are charged particles (electrons and ions), UV photons, and electric fields.

Plasma Chemistry

Plasma Chemistry PDF Author: Alexander Fridman
Publisher: Cambridge University Press
ISBN: 1139471732
Category : Technology & Engineering
Languages : en
Pages :

Get Book Here

Book Description
Providing a fundamental introduction to all aspects of modern plasma chemistry, this book describes mechanisms and kinetics of chemical processes in plasma, plasma statistics, thermodynamics, fluid mechanics and electrodynamics, as well as all major electric discharges applied in plasma chemistry. Fridman considers most of the major applications of plasma chemistry, from electronics to thermal coatings, from treatment of polymers to fuel conversion and hydrogen production and from plasma metallurgy to plasma medicine. It is helpful to engineers, scientists and students interested in plasma physics, plasma chemistry, plasma engineering and combustion, as well as chemical physics, lasers, energy systems and environmental control. The book contains an extensive database on plasma kinetics and thermodynamics and numerical formulas for practical calculations related to specific plasma-chemical processes and applications. Problems and concept questions are provided, helpful in courses related to plasma, lasers, combustion, chemical kinetics, statistics and thermodynamics, and high-temperature and high-energy fluid mechanics.

Plasma Cancer Therapy

Plasma Cancer Therapy PDF Author: Michael Keidar
Publisher: Springer Nature
ISBN: 3030499669
Category : Science
Languages : en
Pages : 310

Get Book Here

Book Description
This book, written by key researchers in the field, provides a comprehensive analysis and overview of the state of the art of plasma-based cancer therapy. Recent progress in atmospheric plasmas has led to non-thermal or cold atmospheric plasma (CAP) devices with ion temperatures close to room temperature. In contrast to many existing anti-cancer approaches, CAP is a selective anti-cancer modality which has demonstrated significant potential in cancer therapy. Written by a global, cross-disciplinary group of leading researchers, this book covers basic theory, generation, diagnostics, and simulation of cold atmospheric plasma, as well as their clinical application in cancer therapy, immunotherapy, and future outlook, giving a complete picture of the field. It is meant for a broad audience, from students to engineers and scientists, who are interested in the emerging world of plasma medical applications. It presents recent advances, primary challenges, and future directions of this exciting, cutting-edge field.

Plasma Medicine

Plasma Medicine PDF Author: M. Laroussi
Publisher: Cambridge University Press
ISBN: 1107378125
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
The introduction of low temperature plasma technology to medical research and to the healthcare arena in general is set to revolutionise the way we cure diseases. This innovative medium offers a valid and advantageous replacement of traditional chemical-based medications. Its application in the inactivation of pathogens in particular, avoids the recurrent problem of drug resistant microorganisms. This is the first book dedicated exclusively to the emerging interdisciplinary field of plasma medicine. The opening chapters discuss plasmas and plasma chemistry, the fundamentals of non-equilibrium plasmas and cell biology. The rest of the book is dedicated to current applications, illustrating a plasma-based approach to wound healing, electrosurgery, cancer treatment and even dentistry. The text provides a clear and integrated introduction to plasma technology and has been devised to answer the needs of researchers from different communities. It will appeal to graduate students and physicists, engineers, biologists, medical doctors and biochemists.

The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets

The Modelling and Characterization of Dielectric Barrier Discharge-Based Cold Plasma Jets PDF Author: G Divya Deepak
Publisher: Cambridge Scholars Publishing
ISBN: 1527545474
Category : Science
Languages : en
Pages : 152

Get Book Here

Book Description
Non-equilibrium atmospheric pressure plasma jets (APPJs) are of intense interest in current low-temperature plasma research because of their immense potential for material processing and biomedical applications. Depending on the jet configuration and the electrical excitation, plasma characteristics including heat, charged particle, electric field, and chemically active species may differ significantly. Other important parameters of importance in these studies are the kind of utilized working gas and gas flow rate. This book presents the electrical characterization of DBD-based APPJs for three electrode arrangements: ring electrode, pin electrode and floating helix electrode configurations. The analysis presented here will serve to help in establishing an optimum range of operation for a cold plasma jet without arcing and without any physical damage to the electrodes. Furthermore, the experimental results provided in the book establish the significance of the type of working gas on the power consumption and on the jet length obtained. These developed cold DBD-based APPJs of larger lengths may be useful for diverse biological applications and surface treatments.

Plasma Catalysis

Plasma Catalysis PDF Author: Annemie Bogaerts
Publisher: MDPI
ISBN: 3038977500
Category : Technology & Engineering
Languages : en
Pages : 248

Get Book Here

Book Description
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.