Author: Robert T. Glassey
Publisher: SIAM
ISBN: 9781611971477
Category : Science
Languages : en
Pages : 254
Book Description
This volume studies the basic equations of kinetic theory in all of space. It contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations, including the Boltzmann equation (from rarefied gas dynamics) and the Vlasov-Poisson/Vlasov-Maxwell systems (from plasma physics). This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although these equations describe very different phenomena, they share the same streaming term. The author proves that solutions starting from a given configuration at an initial time exist for all future times by imposing appropriate hypotheses on the initial values in several important cases. He emphasizes those questions that a mathematician would ask first: Is there a solution to this problem? Is it unique? Can it be numerically approximated? The topics treated include the study of the Boltzmann collision operator, the study of the initial-value problem for the Boltzmann equation with "small" and "near equilibrium" data, global smooth solvability of the initial-value problem for the Vlasov-Poisson system with smooth initial data of unrestricted size, conditions under which the initial-value problem for the Vlasov-Maxwell system has global-in-time solutions (in both the smooth and weak senses), and more.
The Cauchy Problem in Kinetic Theory
Author: Robert T. Glassey
Publisher: SIAM
ISBN: 9781611971477
Category : Science
Languages : en
Pages : 254
Book Description
This volume studies the basic equations of kinetic theory in all of space. It contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations, including the Boltzmann equation (from rarefied gas dynamics) and the Vlasov-Poisson/Vlasov-Maxwell systems (from plasma physics). This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although these equations describe very different phenomena, they share the same streaming term. The author proves that solutions starting from a given configuration at an initial time exist for all future times by imposing appropriate hypotheses on the initial values in several important cases. He emphasizes those questions that a mathematician would ask first: Is there a solution to this problem? Is it unique? Can it be numerically approximated? The topics treated include the study of the Boltzmann collision operator, the study of the initial-value problem for the Boltzmann equation with "small" and "near equilibrium" data, global smooth solvability of the initial-value problem for the Vlasov-Poisson system with smooth initial data of unrestricted size, conditions under which the initial-value problem for the Vlasov-Maxwell system has global-in-time solutions (in both the smooth and weak senses), and more.
Publisher: SIAM
ISBN: 9781611971477
Category : Science
Languages : en
Pages : 254
Book Description
This volume studies the basic equations of kinetic theory in all of space. It contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations, including the Boltzmann equation (from rarefied gas dynamics) and the Vlasov-Poisson/Vlasov-Maxwell systems (from plasma physics). This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although these equations describe very different phenomena, they share the same streaming term. The author proves that solutions starting from a given configuration at an initial time exist for all future times by imposing appropriate hypotheses on the initial values in several important cases. He emphasizes those questions that a mathematician would ask first: Is there a solution to this problem? Is it unique? Can it be numerically approximated? The topics treated include the study of the Boltzmann collision operator, the study of the initial-value problem for the Boltzmann equation with "small" and "near equilibrium" data, global smooth solvability of the initial-value problem for the Vlasov-Poisson system with smooth initial data of unrestricted size, conditions under which the initial-value problem for the Vlasov-Maxwell system has global-in-time solutions (in both the smooth and weak senses), and more.
The Cauchy Problem in Kinetic Theory
Author: Robert T. Glassey
Publisher: SIAM
ISBN: 0898713676
Category : Science
Languages : en
Pages : 246
Book Description
Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.
Publisher: SIAM
ISBN: 0898713676
Category : Science
Languages : en
Pages : 246
Book Description
Studies the basic equations of kinetic theory in all of space, and contains up-to-date, state-of-the-art treatments of initial-value problems for the major kinetic equations. This is the only existing book to treat Boltzmann-type problems and Vlasov-type problems together. Although describing very different phenomena, these equations share the same streaming term.
On the Cauchy Problem
Author: Sigeru Mizohata
Publisher: Academic Press
ISBN: 148326906X
Category : Mathematics
Languages : en
Pages : 186
Book Description
Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.
Publisher: Academic Press
ISBN: 148326906X
Category : Mathematics
Languages : en
Pages : 186
Book Description
Notes and Reports in Mathematics in Science and Engineering, Volume 3: On the Cauchy Problem focuses on the processes, methodologies, and mathematical approaches to Cauchy problems. The publication first elaborates on evolution equations, Lax-Mizohata theorem, and Cauchy problems in Gevrey class. Discussions focus on fundamental proposition, proof of theorem 4, Gevrey property in t of solutions, basic facts on pseudo-differential, and proof of theorem 3. The book then takes a look at micro-local analysis in Gevrey class, including proof and consequences of theorem 1. The manuscript examines Schrödinger type equations, as well as general view-points on evolution equations. Numerical representations and analyses are provided in the explanation of these type of equations. The book is a valuable reference for mathematicians and researchers interested in the Cauchy problem.
Kinetic Boltzmann, Vlasov and Related Equations
Author: Alexander Sinitsyn
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321
Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Publisher: Elsevier
ISBN: 0123877806
Category : Mathematics
Languages : en
Pages : 321
Book Description
Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in 1938 and serves as a basis of plasma physics and describes large-scale processes and galaxies in astronomy, star wind theory.This book provides a comprehensive review of both equations and presents both classical and modern applications. In addition, it discusses several open problems of great importance. - Reviews the whole field from the beginning to today - Includes practical applications - Provides classical and modern (semi-analytical) solutions
Kinetic Equations and Asymptotic Theory
Author: François Bouchut
Publisher: Elsevier Masson
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
Publisher: Elsevier Masson
ISBN:
Category : Science
Languages : en
Pages : 180
Book Description
Handbook of Mathematical Fluid Dynamics
Author: S. Friedlander
Publisher: Gulf Professional Publishing
ISBN: 008053354X
Category : Science
Languages : en
Pages : 627
Book Description
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Publisher: Gulf Professional Publishing
ISBN: 008053354X
Category : Science
Languages : en
Pages : 627
Book Description
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.
Mathematical Topics In Nonlinear Kinetic Theory
Author: Nicola Bellomo
Publisher: World Scientific
ISBN: 9814507482
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book has the aim of dealing with the Nonlinear evolution problems related to the spatially dependent Boltzmann and Enskog equations.
Publisher: World Scientific
ISBN: 9814507482
Category : Mathematics
Languages : en
Pages : 245
Book Description
This book has the aim of dealing with the Nonlinear evolution problems related to the spatially dependent Boltzmann and Enskog equations.
The Relativistic Boltzmann Equation: Theory and Applications
Author: Carlo Cercignani
Publisher: Birkhäuser
ISBN: 3034881657
Category : Science
Languages : en
Pages : 391
Book Description
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
Publisher: Birkhäuser
ISBN: 3034881657
Category : Science
Languages : en
Pages : 391
Book Description
The aim of this book is to present the theory and applications of the relativistic Boltzmann equation in a self-contained manner, even for those readers who have no familiarity with special and general relativity. Though an attempt is made to present the basic concepts in a complete fashion, the style of presentation is chosen to be appealing to readers who want to understand how kinetic theory is used for explicit calculations. The book will be helpful not only as a textbook for an advanced course on relativistic kinetic theory but also as a reference for physicists, astrophysicists and applied mathematicians who are interested in the theory and applications of the relativistic Boltzmann equation.
The Cauchy Problem in General Relativity
Author: Hans Ringström
Publisher: European Mathematical Society
ISBN: 9783037190531
Category : Mathematics
Languages : en
Pages : 310
Book Description
The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Publisher: European Mathematical Society
ISBN: 9783037190531
Category : Mathematics
Languages : en
Pages : 310
Book Description
The general theory of relativity is a theory of manifolds equipped with Lorentz metrics and fields which describe the matter content. Einstein's equations equate the Einstein tensor (a curvature quantity associated with the Lorentz metric) with the stress energy tensor (an object constructed using the matter fields). In addition, there are equations describing the evolution of the matter. Using symmetry as a guiding principle, one is naturally led to the Schwarzschild and Friedmann-Lemaitre-Robertson-Walker solutions, modelling an isolated system and the entire universe respectively. In a different approach, formulating Einstein's equations as an initial value problem allows a closer study of their solutions. This book first provides a definition of the concept of initial data and a proof of the correspondence between initial data and development. It turns out that some initial data allow non-isometric maximal developments, complicating the uniqueness issue. The second half of the book is concerned with this and related problems, such as strong cosmic censorship. The book presents complete proofs of several classical results that play a central role in mathematical relativity but are not easily accessible to those without prior background in the subject. Prerequisites are a good knowledge of basic measure and integration theory as well as the fundamentals of Lorentz geometry. The necessary background from the theory of partial differential equations and Lorentz geometry is included.
Initial-Boundary Value Problems and the Navier-Stokes Equation
Author: Heinz-Otto Kreiss
Publisher: SIAM
ISBN: 0898715652
Category : Science
Languages : en
Pages : 408
Book Description
Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.
Publisher: SIAM
ISBN: 0898715652
Category : Science
Languages : en
Pages : 408
Book Description
Initial-Boundary Value Problems and the Navier-Stokes Equations gives an introduction to the vast subject of initial and initial-boundary value problems for PDEs. Applications to parabolic and hyperbolic systems are emphasized in this text. The Navier-Stokes equations for compressible and incompressible flows are taken as an example to illustrate the results. The subjects addressed in the book, such as the well-posedness of initial-boundary value problems, are of frequent interest when PDEs are used in modeling or when they are solved numerically. The book explains the principles of these subjects. The reader will learn what well-posedness or ill-posedness means and how it can be demonstrated for concrete problems. Audience: when the book was written, the main intent was to write a text on initial-boundary value problems that was accessible to a rather wide audience. Functional analytical prerequisites were kept to a minimum or were developed in the book. Boundary conditions are analyzed without first proving trace theorems, and similar simplifications have been used throughout. This book continues to be useful to researchers and graduate students in applied mathematics and engineering.