Author: Maurice Herlihy
Publisher: Elsevier
ISBN: 0123977959
Category : Computers
Languages : en
Pages : 537
Book Description
Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. - This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 - Learn the fundamentals of programming multiple threads accessing shared memory - Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems - Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience
The Art of Multiprocessor Programming, Revised Reprint
Author: Maurice Herlihy
Publisher: Elsevier
ISBN: 0123977959
Category : Computers
Languages : en
Pages : 537
Book Description
Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. - This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 - Learn the fundamentals of programming multiple threads accessing shared memory - Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems - Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience
Publisher: Elsevier
ISBN: 0123977959
Category : Computers
Languages : en
Pages : 537
Book Description
Revised and updated with improvements conceived in parallel programming courses, The Art of Multiprocessor Programming is an authoritative guide to multicore programming. It introduces a higher level set of software development skills than that needed for efficient single-core programming. This book provides comprehensive coverage of the new principles, algorithms, and tools necessary for effective multiprocessor programming. Students and professionals alike will benefit from thorough coverage of key multiprocessor programming issues. - This revised edition incorporates much-demanded updates throughout the book, based on feedback and corrections reported from classrooms since 2008 - Learn the fundamentals of programming multiple threads accessing shared memory - Explore mainstream concurrent data structures and the key elements of their design, as well as synchronization techniques from simple locks to transactional memory systems - Visit the companion site and download source code, example Java programs, and materials to support and enhance the learning experience
Java Concurrency in Practice
Author: Tim Peierls
Publisher: Pearson Education
ISBN: 0132702258
Category : Computers
Languages : en
Pages : 428
Book Description
Threads are a fundamental part of the Java platform. As multicore processors become the norm, using concurrency effectively becomes essential for building high-performance applications. Java SE 5 and 6 are a huge step forward for the development of concurrent applications, with improvements to the Java Virtual Machine to support high-performance, highly scalable concurrent classes and a rich set of new concurrency building blocks. In Java Concurrency in Practice, the creators of these new facilities explain not only how they work and how to use them, but also the motivation and design patterns behind them. However, developing, testing, and debugging multithreaded programs can still be very difficult; it is all too easy to create concurrent programs that appear to work, but fail when it matters most: in production, under heavy load. Java Concurrency in Practice arms readers with both the theoretical underpinnings and concrete techniques for building reliable, scalable, maintainable concurrent applications. Rather than simply offering an inventory of concurrency APIs and mechanisms, it provides design rules, patterns, and mental models that make it easier to build concurrent programs that are both correct and performant. This book covers: Basic concepts of concurrency and thread safety Techniques for building and composing thread-safe classes Using the concurrency building blocks in java.util.concurrent Performance optimization dos and don'ts Testing concurrent programs Advanced topics such as atomic variables, nonblocking algorithms, and the Java Memory Model
Publisher: Pearson Education
ISBN: 0132702258
Category : Computers
Languages : en
Pages : 428
Book Description
Threads are a fundamental part of the Java platform. As multicore processors become the norm, using concurrency effectively becomes essential for building high-performance applications. Java SE 5 and 6 are a huge step forward for the development of concurrent applications, with improvements to the Java Virtual Machine to support high-performance, highly scalable concurrent classes and a rich set of new concurrency building blocks. In Java Concurrency in Practice, the creators of these new facilities explain not only how they work and how to use them, but also the motivation and design patterns behind them. However, developing, testing, and debugging multithreaded programs can still be very difficult; it is all too easy to create concurrent programs that appear to work, but fail when it matters most: in production, under heavy load. Java Concurrency in Practice arms readers with both the theoretical underpinnings and concrete techniques for building reliable, scalable, maintainable concurrent applications. Rather than simply offering an inventory of concurrency APIs and mechanisms, it provides design rules, patterns, and mental models that make it easier to build concurrent programs that are both correct and performant. This book covers: Basic concepts of concurrency and thread safety Techniques for building and composing thread-safe classes Using the concurrency building blocks in java.util.concurrent Performance optimization dos and don'ts Testing concurrent programs Advanced topics such as atomic variables, nonblocking algorithms, and the Java Memory Model
Structured Parallel Programming
Author: Michael McCool
Publisher: Elsevier
ISBN: 0124159931
Category : Computers
Languages : en
Pages : 434
Book Description
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers
Publisher: Elsevier
ISBN: 0124159931
Category : Computers
Languages : en
Pages : 434
Book Description
Programming is now parallel programming. Much as structured programming revolutionized traditional serial programming decades ago, a new kind of structured programming, based on patterns, is relevant to parallel programming today. Parallel computing experts and industry insiders Michael McCool, Arch Robison, and James Reinders describe how to design and implement maintainable and efficient parallel algorithms using a pattern-based approach. They present both theory and practice, and give detailed concrete examples using multiple programming models. Examples are primarily given using two of the most popular and cutting edge programming models for parallel programming: Threading Building Blocks, and Cilk Plus. These architecture-independent models enable easy integration into existing applications, preserve investments in existing code, and speed the development of parallel applications. Examples from realistic contexts illustrate patterns and themes in parallel algorithm design that are widely applicable regardless of implementation technology. The patterns-based approach offers structure and insight that developers can apply to a variety of parallel programming models Develops a composable, structured, scalable, and machine-independent approach to parallel computing Includes detailed examples in both Cilk Plus and the latest Threading Building Blocks, which support a wide variety of computers
Foundations of Multithreaded, Parallel, and Distributed Programming
Author: Gregory R. Andrews
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 696
Book Description
Foundations of Multithreaded, Parallel, and Distributed Programming covers, and then applies, the core concepts and techniques needed for an introductory course in this subject. Its emphasis is on the practice and application of parallel systems, using real-world examples throughout. Greg Andrews teaches the fundamental concepts of multithreaded, parallel and distributed computing and relates them to the implementation and performance processes. He presents the appropriate breadth of topics and supports these discussions with an emphasis on performance. Features Emphasizes how to solve problems, with correctness the primary concern and performance an important, but secondary, concern Includes a number of case studies which cover such topics as pthreads, MPI, and OpenMP libraries, as well as programming languages like Java, Ada, high performance Fortran, Linda, Occam, and SR Provides examples using Java syntax and discusses how Java deals with monitors, sockets, and remote method invocation Covers current programming techniques such as semaphores, locks, barriers, monitors, message passing, and remote invocation Concrete examples are executed with complete programs, both shared and distributed Sample applications include scientific computing and distributed systems 0201357526B04062001
Distributed Computing Through Combinatorial Topology
Author: Maurice Herlihy
Publisher: Newnes
ISBN: 0124047289
Category : Computers
Languages : en
Pages : 335
Book Description
Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises
Publisher: Newnes
ISBN: 0124047289
Category : Computers
Languages : en
Pages : 335
Book Description
Distributed Computing Through Combinatorial Topology describes techniques for analyzing distributed algorithms based on award winning combinatorial topology research. The authors present a solid theoretical foundation relevant to many real systems reliant on parallelism with unpredictable delays, such as multicore microprocessors, wireless networks, distributed systems, and Internet protocols. Today, a new student or researcher must assemble a collection of scattered conference publications, which are typically terse and commonly use different notations and terminologies. This book provides a self-contained explanation of the mathematics to readers with computer science backgrounds, as well as explaining computer science concepts to readers with backgrounds in applied mathematics. The first section presents mathematical notions and models, including message passing and shared-memory systems, failures, and timing models. The next section presents core concepts in two chapters each: first, proving a simple result that lends itself to examples and pictures that will build up readers' intuition; then generalizing the concept to prove a more sophisticated result. The overall result weaves together and develops the basic concepts of the field, presenting them in a gradual and intuitively appealing way. The book's final section discusses advanced topics typically found in a graduate-level course for those who wish to explore further. - Named a 2013 Notable Computer Book for Computing Methodologies by Computing Reviews - Gathers knowledge otherwise spread across research and conference papers using consistent notations and a standard approach to facilitate understanding - Presents unique insights applicable to multiple computing fields, including multicore microprocessors, wireless networks, distributed systems, and Internet protocols - Synthesizes and distills material into a simple, unified presentation with examples, illustrations, and exercises
Shared-Memory Synchronization
Author: Michael L. Scott
Publisher: Springer Nature
ISBN: 3031017404
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
From driving, flying, and swimming, to digging for unknown objects in space exploration, autonomous robots take on varied shapes and sizes. In part, autonomous robots are designed to perform tasks that are too dirty, dull, or dangerous for humans. With nontrivial autonomy and volition, they may soon claim their own place in human society. These robots will be our allies as we strive for understanding our natural and man-made environments and build positive synergies around us. Although we may never perfect replication of biological capabilities in robots, we must harness the inevitable emergence of robots that synchronizes with our own capacities to live, learn, and grow. This book is a snapshot of motivations and methodologies for our collective attempts to transform our lives and enable us to cohabit with robots that work with and for us. It reviews and guides the reader to seminal and continual developments that are the foundations for successful paradigms. It attempts to demystify the abilities and limitations of robots. It is a progress report on the continuing work that will fuel future endeavors. Table of Contents: Part I: Preliminaries/Agency, Motion, and Anatomy/Behaviors / Architectures / Affect/Sensors / Manipulators/Part II: Mobility/Potential Fields/Roadmaps / Reactive Navigation / Multi-Robot Mapping: Brick and Mortar Strategy / Part III: State of the Art / Multi-Robotics Phenomena / Human-Robot Interaction / Fuzzy Control / Decision Theory and Game Theory / Part IV: On the Horizon / Applications: Macro and Micro Robots / References / Author Biography / Discussion
Publisher: Springer Nature
ISBN: 3031017404
Category : Technology & Engineering
Languages : en
Pages : 206
Book Description
From driving, flying, and swimming, to digging for unknown objects in space exploration, autonomous robots take on varied shapes and sizes. In part, autonomous robots are designed to perform tasks that are too dirty, dull, or dangerous for humans. With nontrivial autonomy and volition, they may soon claim their own place in human society. These robots will be our allies as we strive for understanding our natural and man-made environments and build positive synergies around us. Although we may never perfect replication of biological capabilities in robots, we must harness the inevitable emergence of robots that synchronizes with our own capacities to live, learn, and grow. This book is a snapshot of motivations and methodologies for our collective attempts to transform our lives and enable us to cohabit with robots that work with and for us. It reviews and guides the reader to seminal and continual developments that are the foundations for successful paradigms. It attempts to demystify the abilities and limitations of robots. It is a progress report on the continuing work that will fuel future endeavors. Table of Contents: Part I: Preliminaries/Agency, Motion, and Anatomy/Behaviors / Architectures / Affect/Sensors / Manipulators/Part II: Mobility/Potential Fields/Roadmaps / Reactive Navigation / Multi-Robot Mapping: Brick and Mortar Strategy / Part III: State of the Art / Multi-Robotics Phenomena / Human-Robot Interaction / Fuzzy Control / Decision Theory and Game Theory / Part IV: On the Horizon / Applications: Macro and Micro Robots / References / Author Biography / Discussion
The Art of Parallel Programming
Author: Bruce P. Lester
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 410
Book Description
Mathematics of Computing -- Parallelism.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 410
Book Description
Mathematics of Computing -- Parallelism.
GPGPU Programming for Games and Science
Author: David H. Eberly
Publisher: CRC Press
ISBN: 1466595353
Category : Computers
Languages : en
Pages : 471
Book Description
An In-Depth, Practical Guide to GPGPU Programming Using Direct3D 11 GPGPU Programming for Games and Science demonstrates how to achieve the following requirements to tackle practical problems in computer science and software engineering: Robustness Accuracy Speed Quality source code that is easily maintained, reusable, and readable The book primarily addresses programming on a graphics processing unit (GPU) while covering some material also relevant to programming on a central processing unit (CPU). It discusses many concepts of general purpose GPU (GPGPU) programming and presents practical examples in game programming and scientific programming. The author first describes numerical issues that arise when computing with floating-point arithmetic, including making trade-offs among robustness, accuracy, and speed. He then shows how single instruction multiple data (SIMD) extensions work on CPUs since GPUs also use SIMD. The core of the book focuses on the GPU from the perspective of Direct3D 11 (D3D11) and the High Level Shading Language (HLSL). This chapter covers drawing 3D objects; vertex, geometry, pixel, and compute shaders; input and output resources for shaders; copying data between CPU and GPU; configuring two or more GPUs to act as one; and IEEE floating-point support on a GPU. The book goes on to explore practical matters of programming a GPU, including code sharing among applications and performing basic tasks on the GPU. Focusing on mathematics, it next discusses vector and matrix algebra, rotations and quaternions, and coordinate systems. The final chapter gives several sample GPGPU applications on relatively advanced topics. Web Resource Available on a supporting website, the author’s fully featured Geometric Tools Engine for computing and graphics saves you from having to write a large amount of infrastructure code necessary for even the simplest of applications involving shader programming. The engine provides robust and accurate source code with SIMD when appropriate and GPU versions of algorithms when possible.
Publisher: CRC Press
ISBN: 1466595353
Category : Computers
Languages : en
Pages : 471
Book Description
An In-Depth, Practical Guide to GPGPU Programming Using Direct3D 11 GPGPU Programming for Games and Science demonstrates how to achieve the following requirements to tackle practical problems in computer science and software engineering: Robustness Accuracy Speed Quality source code that is easily maintained, reusable, and readable The book primarily addresses programming on a graphics processing unit (GPU) while covering some material also relevant to programming on a central processing unit (CPU). It discusses many concepts of general purpose GPU (GPGPU) programming and presents practical examples in game programming and scientific programming. The author first describes numerical issues that arise when computing with floating-point arithmetic, including making trade-offs among robustness, accuracy, and speed. He then shows how single instruction multiple data (SIMD) extensions work on CPUs since GPUs also use SIMD. The core of the book focuses on the GPU from the perspective of Direct3D 11 (D3D11) and the High Level Shading Language (HLSL). This chapter covers drawing 3D objects; vertex, geometry, pixel, and compute shaders; input and output resources for shaders; copying data between CPU and GPU; configuring two or more GPUs to act as one; and IEEE floating-point support on a GPU. The book goes on to explore practical matters of programming a GPU, including code sharing among applications and performing basic tasks on the GPU. Focusing on mathematics, it next discusses vector and matrix algebra, rotations and quaternions, and coordinate systems. The final chapter gives several sample GPGPU applications on relatively advanced topics. Web Resource Available on a supporting website, the author’s fully featured Geometric Tools Engine for computing and graphics saves you from having to write a large amount of infrastructure code necessary for even the simplest of applications involving shader programming. The engine provides robust and accurate source code with SIMD when appropriate and GPU versions of algorithms when possible.
Programming and Customizing the Multicore Propeller Microcontroller: The Official Guide
Author: Parallax
Publisher: McGraw Hill Professional
ISBN: 0071664513
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
The Only Official Guide to the Parallax Multicore Propeller Microcontroller Written by a team of Propeller experts, this authoritative guide shows you how to realize your design concepts by taking full advantage of the multicore Propeller microcontroller's unique architecture. The book begins with a review of the Propeller hardware, software, and Spin language so you can get started right away. Programming and Customizing the Multicore Propeller Microcontroller: The Official Guide is filled with a wide variety of step-by-step, hands-on projects. Put your ideas into production when you learn how to: Debug code for multiple cores Understand how the Propeller interacts with different sensors Wirelessly network Propeller chips Build a balancing robot and control it with computer vision Develop networking applications using an off-the-shelf Ethernet chip Create a portable multivariable GPS tracking and data logging device Use the Propeller as a remote virtual peripheral for media applications Create a Propeller-powered HVAC green house model Synthesize speech with the Propeller Experience more of the process at mhprofessional.com/propeller
Publisher: McGraw Hill Professional
ISBN: 0071664513
Category : Technology & Engineering
Languages : en
Pages : 495
Book Description
The Only Official Guide to the Parallax Multicore Propeller Microcontroller Written by a team of Propeller experts, this authoritative guide shows you how to realize your design concepts by taking full advantage of the multicore Propeller microcontroller's unique architecture. The book begins with a review of the Propeller hardware, software, and Spin language so you can get started right away. Programming and Customizing the Multicore Propeller Microcontroller: The Official Guide is filled with a wide variety of step-by-step, hands-on projects. Put your ideas into production when you learn how to: Debug code for multiple cores Understand how the Propeller interacts with different sensors Wirelessly network Propeller chips Build a balancing robot and control it with computer vision Develop networking applications using an off-the-shelf Ethernet chip Create a portable multivariable GPS tracking and data logging device Use the Propeller as a remote virtual peripheral for media applications Create a Propeller-powered HVAC green house model Synthesize speech with the Propeller Experience more of the process at mhprofessional.com/propeller
Shared Memory Application Programming
Author: Victor Alessandrini
Publisher: Morgan Kaufmann
ISBN: 0128038209
Category : Computers
Languages : en
Pages : 557
Book Description
Shared Memory Application Programming presents the key concepts and applications of parallel programming, in an accessible and engaging style applicable to developers across many domains. Multithreaded programming is today a core technology, at the basis of all software development projects in any branch of applied computer science. This book guides readers to develop insights about threaded programming and introduces two popular platforms for multicore development: OpenMP and Intel Threading Building Blocks (TBB). Author Victor Alessandrini leverages his rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability. The book is divided into two parts: the first develops the essential concepts of thread management and synchronization, discussing the way they are implemented in native multithreading libraries (Windows threads, Pthreads) as well as in the modern C++11 threads standard. The second provides an in-depth discussion of TBB and OpenMP including the latest features in OpenMP 4.0 extensions to ensure readers' skills are fully up to date. Focus progressively shifts from traditional thread parallelism to modern task parallelism deployed by modern programming environments. Several chapter include examples drawn from a variety of disciplines, including molecular dynamics and image processing, with full source code and a software library incorporating a number of utilities that readers can adapt into their own projects. - Designed to introduce threading and multicore programming to teach modern coding strategies for developers in applied computing - Leverages author Victor Alessandrini's rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability - Includes complete, up-to-date discussions of OpenMP 4.0 and TBB - Based on the author's training sessions, including information on source code and software libraries which can be repurposed
Publisher: Morgan Kaufmann
ISBN: 0128038209
Category : Computers
Languages : en
Pages : 557
Book Description
Shared Memory Application Programming presents the key concepts and applications of parallel programming, in an accessible and engaging style applicable to developers across many domains. Multithreaded programming is today a core technology, at the basis of all software development projects in any branch of applied computer science. This book guides readers to develop insights about threaded programming and introduces two popular platforms for multicore development: OpenMP and Intel Threading Building Blocks (TBB). Author Victor Alessandrini leverages his rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability. The book is divided into two parts: the first develops the essential concepts of thread management and synchronization, discussing the way they are implemented in native multithreading libraries (Windows threads, Pthreads) as well as in the modern C++11 threads standard. The second provides an in-depth discussion of TBB and OpenMP including the latest features in OpenMP 4.0 extensions to ensure readers' skills are fully up to date. Focus progressively shifts from traditional thread parallelism to modern task parallelism deployed by modern programming environments. Several chapter include examples drawn from a variety of disciplines, including molecular dynamics and image processing, with full source code and a software library incorporating a number of utilities that readers can adapt into their own projects. - Designed to introduce threading and multicore programming to teach modern coding strategies for developers in applied computing - Leverages author Victor Alessandrini's rich experience to explain each platform's design strategies, analyzing the focus and strengths underlying their often complementary capabilities, as well as their interoperability - Includes complete, up-to-date discussions of OpenMP 4.0 and TBB - Based on the author's training sessions, including information on source code and software libraries which can be repurposed