Author: Samad Khakshournia
Publisher: Springer Nature
ISBN: 3031486129
Category : Science
Languages : en
Pages : 126
Book Description
This concise book reviews methods used for gluing space-time manifolds together. It is therefore relevant to theorists working on branes, walls, domain walls, concepts frequently used in theoretical cosmology, astrophysics, and gravity theory. Nowadays, applications are also in theoretical condensed matter physics where Riemannian geometry appears. The book also reviews the history of matching conditions between two space-time manifolds from the early times of general relativity up to now.
The Art of Gluing Space-Time Manifolds
Author: Samad Khakshournia
Publisher: Springer Nature
ISBN: 3031486129
Category : Science
Languages : en
Pages : 126
Book Description
This concise book reviews methods used for gluing space-time manifolds together. It is therefore relevant to theorists working on branes, walls, domain walls, concepts frequently used in theoretical cosmology, astrophysics, and gravity theory. Nowadays, applications are also in theoretical condensed matter physics where Riemannian geometry appears. The book also reviews the history of matching conditions between two space-time manifolds from the early times of general relativity up to now.
Publisher: Springer Nature
ISBN: 3031486129
Category : Science
Languages : en
Pages : 126
Book Description
This concise book reviews methods used for gluing space-time manifolds together. It is therefore relevant to theorists working on branes, walls, domain walls, concepts frequently used in theoretical cosmology, astrophysics, and gravity theory. Nowadays, applications are also in theoretical condensed matter physics where Riemannian geometry appears. The book also reviews the history of matching conditions between two space-time manifolds from the early times of general relativity up to now.
Lumen Naturae
Author: Matilde Marcolli
Publisher: MIT Press
ISBN: 0262358328
Category : Mathematics
Languages : en
Pages : 390
Book Description
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dalí, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Léger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.
Publisher: MIT Press
ISBN: 0262358328
Category : Mathematics
Languages : en
Pages : 390
Book Description
Exploring common themes in modern art, mathematics, and science, including the concept of space, the notion of randomness, and the shape of the cosmos. This is a book about art—and a book about mathematics and physics. In Lumen Naturae (the title refers to a purely immanent, non-supernatural form of enlightenment), mathematical physicist Matilde Marcolli explores common themes in modern art and modern science—the concept of space, the notion of randomness, the shape of the cosmos, and other puzzles of the universe—while mapping convergences with the work of such artists as Paul Cezanne, Mark Rothko, Sol LeWitt, and Lee Krasner. Her account, focusing on questions she has investigated in her own scientific work, is illustrated by more than two hundred color images of artworks by modern and contemporary artists. Thus Marcolli finds in still life paintings broad and deep philosophical reflections on space and time, and connects notions of space in mathematics to works by Paul Klee, Salvador Dalí, and others. She considers the relation of entropy and art and how notions of entropy have been expressed by such artists as Hans Arp and Fernand Léger; and traces the evolution of randomness as a mode of artistic expression. She analyzes the relation between graphical illustration and scientific text, and offers her own watercolor-decorated mathematical notebooks. Throughout, she balances discussions of science with explorations of art, using one to inform the other. (She employs some formal notation, which can easily be skipped by general readers.) Marcolli is not simply explaining art to scientists and science to artists; she charts unexpected interdependencies that illuminate the universe.
Groups and Manifolds
Author: Pietro Giuseppe Fré
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551330
Category : Science
Languages : en
Pages : 579
Book Description
Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for physicists, touching briefly also on super-symmetric field theories. The core of the course is focused on the construction of simple Lie algebras, emphasizing the double interpretation of the ADE classification as applied to finite rotation groups and to simply laced simple Lie algebras. Unique features of this book are the full-fledged treatment of the exceptional Lie algebras and a rich collection of MATHEMATICA Notebooks implementing various group theoretical constructions.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110551330
Category : Science
Languages : en
Pages : 579
Book Description
Groups and Manifolds is an introductory, yet a complete self-contained course on mathematics of symmetry: group theory and differential geometry of symmetric spaces, with a variety of examples for physicists, touching briefly also on super-symmetric field theories. The core of the course is focused on the construction of simple Lie algebras, emphasizing the double interpretation of the ADE classification as applied to finite rotation groups and to simply laced simple Lie algebras. Unique features of this book are the full-fledged treatment of the exceptional Lie algebras and a rich collection of MATHEMATICA Notebooks implementing various group theoretical constructions.
Discrete, Finite and Lie Groups
Author: Pietro Giuseppe Fré
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111201538
Category : Science
Languages : en
Pages : 530
Book Description
In a self contained and exhaustive work the author covers Group Theory in its multifaceted aspects, treating its conceptual foundations in a proper logical order. First discrete and finite group theory, that includes the entire chemical-physical field of crystallography is developed self consistently, followed by the structural theory of Lie Algebras with a complete exposition of the roots and Dynkin diagrams lore. A primary on Fibre-Bundles, Connections and Gauge fields, Riemannian Geometry and the theory of Homogeneous Spaces G/H is also included and systematically developed.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111201538
Category : Science
Languages : en
Pages : 530
Book Description
In a self contained and exhaustive work the author covers Group Theory in its multifaceted aspects, treating its conceptual foundations in a proper logical order. First discrete and finite group theory, that includes the entire chemical-physical field of crystallography is developed self consistently, followed by the structural theory of Lie Algebras with a complete exposition of the roots and Dynkin diagrams lore. A primary on Fibre-Bundles, Connections and Gauge fields, Riemannian Geometry and the theory of Homogeneous Spaces G/H is also included and systematically developed.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 892
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 892
Book Description
Perspectives In Scalar Curvature (In 2 Volumes)
Author: Mikhail L Gromov
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Publisher: World Scientific
ISBN: 9811249377
Category : Mathematics
Languages : en
Pages : 1635
Book Description
Volume I contains a long article by Misha Gromov based on his many years of involvement in this subject. It came from lectures delivered in Spring 2019 at IHES. There is some background given. Many topics in the field are presented, and many open problems are discussed. One intriguing point here is the crucial role played by two seemingly unrelated analytic means: index theory of Dirac operators and geometric measure theory.Very recently there have been some real breakthroughs in the field. Volume I has several survey articles written by people who were responsible for these results.For Volume II, many people in areas of mathematics and physics, whose work is somehow related to scalar curvature, were asked to write about this in any way they pleased. This gives rise to a wonderful collection of articles, some with very broad and historical views, others which discussed specific fascinating subjects.These two books give a rich and powerful view of one of geometry's very appealing sides.
Math and Art
Author: Sasho Kalajdzievski
Publisher: CRC Press
ISBN: 1584889144
Category : Mathematics
Languages : en
Pages : 282
Book Description
Math and Art: An Introduction to Visual Mathematics explores the potential of mathematics to generate visually appealing objects and reveals some of the beauty of mathematics. With downloadable resources and a 16-page full-color insert, it includes numerous illustrations, computer-generated graphics, photographs, and art reproductions to demonstrate how mathematics can inspire art. Basic Math Topics and Their Visual Aspects Focusing on accessible, visually interesting, and mathematically relevant topics, the text unifies mathematics subjects through their visual and conceptual beauty. Sequentially organized according to mathematical maturity level, each chapter covers a cross section of mathematics, from fundamental Euclidean geometry, tilings, and fractals to hyperbolic geometry, platonic solids, and topology. For art students, the book stresses an understanding of the mathematical background of relatively complicated yet intriguing visual objects. For science students, it presents various elegant mathematical theories and notions. Comprehensive Material for a Math in Art Course Providing all of the material for a complete one-semester course on mathematics in art, this self-contained text shows how artistic practice with mathematics and a comprehension of mathematical concepts are needed to logically and creatively appreciate the field of mathematics.
Publisher: CRC Press
ISBN: 1584889144
Category : Mathematics
Languages : en
Pages : 282
Book Description
Math and Art: An Introduction to Visual Mathematics explores the potential of mathematics to generate visually appealing objects and reveals some of the beauty of mathematics. With downloadable resources and a 16-page full-color insert, it includes numerous illustrations, computer-generated graphics, photographs, and art reproductions to demonstrate how mathematics can inspire art. Basic Math Topics and Their Visual Aspects Focusing on accessible, visually interesting, and mathematically relevant topics, the text unifies mathematics subjects through their visual and conceptual beauty. Sequentially organized according to mathematical maturity level, each chapter covers a cross section of mathematics, from fundamental Euclidean geometry, tilings, and fractals to hyperbolic geometry, platonic solids, and topology. For art students, the book stresses an understanding of the mathematical background of relatively complicated yet intriguing visual objects. For science students, it presents various elegant mathematical theories and notions. Comprehensive Material for a Math in Art Course Providing all of the material for a complete one-semester course on mathematics in art, this self-contained text shows how artistic practice with mathematics and a comprehension of mathematical concepts are needed to logically and creatively appreciate the field of mathematics.
100 Years of Relativity
Author: Abhay Ashtekar
Publisher: World Scientific
ISBN: 9812700986
Category : Science
Languages : en
Pages : 527
Book Description
Thanks to Einstein''s relativity theories, our notions of space and time underwent profound revisions about a 100 years ago. The resulting interplay between geometry and physics has dominated all of fundamental physics since then. This volume contains contributions from leading researchers, worldwide, who have thought deeply about the nature and consequences of this interplay. The articles take a long-range view of the subject and distill the most important advances in broad terms, making them easily accessible to non-specialists. The first part is devoted to a summary of how relativity theories were born (J Stachel). The second part discusses the most dramatic ramifications of general relativity, such as black holes (P Chrusciel and R Price), space-time singularities (H Nicolai and A Rendall), gravitational waves (P Laguna and P Saulson), the large scale structure of the cosmos (T Padmanabhan); experimental status of this theory (C Will) as well as its practical application to the GPS system (N Ashby). The last part looks beyond Einstein and provides glimpses into what is in store for us in the 21st century. Contributions here include summaries of radical changes in the notions of space and time that are emerging from quantum field theory in curved space-times (Ford), string theory (T Banks), loop quantum gravity (A Ashtekar), quantum cosmology (M Bojowald), discrete approaches (Dowker, Gambini and Pullin) and twistor theory (R Penrose).
Publisher: World Scientific
ISBN: 9812700986
Category : Science
Languages : en
Pages : 527
Book Description
Thanks to Einstein''s relativity theories, our notions of space and time underwent profound revisions about a 100 years ago. The resulting interplay between geometry and physics has dominated all of fundamental physics since then. This volume contains contributions from leading researchers, worldwide, who have thought deeply about the nature and consequences of this interplay. The articles take a long-range view of the subject and distill the most important advances in broad terms, making them easily accessible to non-specialists. The first part is devoted to a summary of how relativity theories were born (J Stachel). The second part discusses the most dramatic ramifications of general relativity, such as black holes (P Chrusciel and R Price), space-time singularities (H Nicolai and A Rendall), gravitational waves (P Laguna and P Saulson), the large scale structure of the cosmos (T Padmanabhan); experimental status of this theory (C Will) as well as its practical application to the GPS system (N Ashby). The last part looks beyond Einstein and provides glimpses into what is in store for us in the 21st century. Contributions here include summaries of radical changes in the notions of space and time that are emerging from quantum field theory in curved space-times (Ford), string theory (T Banks), loop quantum gravity (A Ashtekar), quantum cosmology (M Bojowald), discrete approaches (Dowker, Gambini and Pullin) and twistor theory (R Penrose).
The Topology of 4-Manifolds
Author: Robion C. Kirby
Publisher: Springer
ISBN: 354046171X
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
Publisher: Springer
ISBN: 354046171X
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents the classical theorems about simply connected smooth 4-manifolds: intersection forms and homotopy type, oriented and spin bordism, the index theorem, Wall's diffeomorphisms and h-cobordism, and Rohlin's theorem. Most of the proofs are new or are returbishings of post proofs; all are geometric and make us of handlebody theory. There is a new proof of Rohlin's theorem using spin structures. There is an introduction to Casson handles and Freedman's work including a chapter of unpublished proofs on exotic R4's. The reader needs an understanding of smooth manifolds and characteristic classes in low dimensions. The book should be useful to beginning researchers in 4-manifolds.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1102
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1102
Book Description