The Algebraic Theory of Modular Systems

The Algebraic Theory of Modular Systems PDF Author: Francis Sowerby Macaulay
Publisher:
ISBN:
Category : Elimination
Languages : en
Pages : 132

Get Book Here

Book Description

The Algebraic Theory of Modular Systems

The Algebraic Theory of Modular Systems PDF Author: Francis Sowerby Macaulay
Publisher:
ISBN:
Category : Elimination
Languages : en
Pages : 132

Get Book Here

Book Description


The Algebraic Theory of Modular Systems

The Algebraic Theory of Modular Systems PDF Author: F. S. Macaulay
Publisher: Cambridge University Press
ISBN: 9780521455626
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
Originally published over 75 years ago, the wealth of thinking expounded here by Macaulay will still be a source of inspiration to all workers in commutative algebra.

The Algebraic Theory of Modular Systems

The Algebraic Theory of Modular Systems PDF Author: Francis S. Macaulay
Publisher:
ISBN:
Category : Elimination
Languages : en
Pages : 140

Get Book Here

Book Description


Modular Theory in Operator Algebras

Modular Theory in Operator Algebras PDF Author: Şerban Strǎtilǎ
Publisher: Cambridge University Press
ISBN: 1108489605
Category : Mathematics
Languages : en
Pages : 461

Get Book Here

Book Description
Discusses the fundamentals and latest developments in operator algebras, focusing on continuous and discrete decomposition of factors of type III.

Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers

Two Algebraic Byways from Differential Equations: Gröbner Bases and Quivers PDF Author: Kenji Iohara
Publisher: Springer Nature
ISBN: 3030264548
Category : Mathematics
Languages : en
Pages : 375

Get Book Here

Book Description
This edited volume presents a fascinating collection of lecture notes focusing on differential equations from two viewpoints: formal calculus (through the theory of Gröbner bases) and geometry (via quiver theory). Gröbner bases serve as effective models for computation in algebras of various types. Although the theory of Gröbner bases was developed in the second half of the 20th century, many works on computational methods in algebra were published well before the introduction of the modern algebraic language. Since then, new algorithms have been developed and the theory itself has greatly expanded. In comparison, diagrammatic methods in representation theory are relatively new, with the quiver varieties only being introduced – with big impact – in the 1990s. Divided into two parts, the book first discusses the theory of Gröbner bases in their commutative and noncommutative contexts, with a focus on algorithmic aspects and applications of Gröbner bases to analysis on systems of partial differential equations, effective analysis on rings of differential operators, and homological algebra. It then introduces representations of quivers, quiver varieties and their applications to the moduli spaces of meromorphic connections on the complex projective line. While no particular reader background is assumed, the book is intended for graduate students in mathematics, engineering and related fields, as well as researchers and scholars.

Theory of Algebraic Integers

Theory of Algebraic Integers PDF Author: Richard Dedekind
Publisher: Cambridge University Press
ISBN: 0521565189
Category : Mathematics
Languages : en
Pages : 170

Get Book Here

Book Description
A translation of a classic work by one of the truly great figures of mathematics.

Solving Polynomial Equation Systems IV: Volume 4, Buchberger Theory and Beyond

Solving Polynomial Equation Systems IV: Volume 4, Buchberger Theory and Beyond PDF Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 1316381382
Category : Mathematics
Languages : en
Pages : 833

Get Book Here

Book Description
In this fourth and final volume the author extends Buchberger's Algorithm in three different directions. First, he extends the theory to group rings and other Ore-like extensions, and provides an operative scheme that allows one to set a Buchberger theory over any effective associative ring. Second, he covers similar extensions as tools for discussing parametric polynomial systems, the notion of SAGBI-bases, Gröbner bases over invariant rings and Hironaka's theory. Finally, Mora shows how Hilbert's followers - notably Janet, Gunther and Macaulay - anticipated Buchberger's ideas and discusses the most promising recent alternatives by Gerdt (involutive bases) and Faugère (F4 and F5). This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.

Computational Algebraic Geometry

Computational Algebraic Geometry PDF Author: Frederic Eyssette
Publisher: Springer Science & Business Media
ISBN: 1461227526
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
The theory and practice of computation in algebraic geometry and related domains, from a mathematical point of view, has generated an increasing interest both for its rich theoretical possibilities and its usefulness in applications in science and engineering. In fact, it is one of the master keys for future significant improvement of the computer algebra systems (e.g., Reduce, Macsyma, Maple, Mathematica, Axiom, Macaulay, etc.) that have become such useful tools for many scientists in a variety of disciplines. The major themes covered in this volume, arising from papers p- sented at the conference MEGA-92 were: - Effective methods and complexity issues in commutative algebra, projective geometry, real geometry, and algebraic number theory - Algebra-geometric methods in algebraic computing and applica tions. MEGA-92 was the second of a new series of European conferences on the general theme of Effective Methods in Algebraic Geometry. It was held in Nice, France, on April 21-25, 1992 and built on the themes presented at MEGA-90 (Livomo, Italy, April 17-21, 1990). The next conference - MEGA-94 - will be held in Santander, Spain in the spring of 1994. The Organizing committee that initiatiod and supervises this bi enniel conference consists of A. Conte (Torino), J.H. Davenport (Bath), A. Galligo (Nice), D. Yu. Grigoriev (Petersburg), J. Heintz (Buenos Aires), W. Lassner (Leipzig), D. Lazard (paris), H.M. MOller (Hagen), T. Mora (Genova), M. Pohst (DUsseldort), T. Recio (Santander), J.J.

Commutative Algebra

Commutative Algebra PDF Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 1461253500
Category : Mathematics
Languages : en
Pages : 784

Get Book Here

Book Description
This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.

Computational Methods in Commutative Algebra and Algebraic Geometry

Computational Methods in Commutative Algebra and Algebraic Geometry PDF Author: Wolmer Vasconcelos
Publisher: Springer Science & Business Media
ISBN: 9783540213116
Category : Mathematics
Languages : en
Pages : 432

Get Book Here

Book Description
This ACM volume deals with tackling problems that can be represented by data structures which are essentially matrices with polynomial entries, mediated by the disciplines of commutative algebra and algebraic geometry. The discoveries stem from an interdisciplinary branch of research which has been growing steadily over the past decade. The author covers a wide range, from showing how to obtain deep heuristics in a computation of a ring, a module or a morphism, to developing means of solving nonlinear systems of equations - highlighting the use of advanced techniques to bring down the cost of computation. Although intended for advanced students and researchers with interests both in algebra and computation, many parts may be read by anyone with a basic abstract algebra course.