Author: Gerald James Holton
Publisher: Harvard University Press
ISBN: 9780674005303
Category : Biography & Autobiography
Languages : en
Pages : 420
Book Description
In questioning the scientific enterprise and its effect on the society around it, this analysis of modern science has a particular emphasis on the role of thematic elements - often unconscious presuppositions that guide scientific work.
The Advancement of Science, and Its Burdens
Author: Gerald James Holton
Publisher: Harvard University Press
ISBN: 9780674005303
Category : Biography & Autobiography
Languages : en
Pages : 420
Book Description
In questioning the scientific enterprise and its effect on the society around it, this analysis of modern science has a particular emphasis on the role of thematic elements - often unconscious presuppositions that guide scientific work.
Publisher: Harvard University Press
ISBN: 9780674005303
Category : Biography & Autobiography
Languages : en
Pages : 420
Book Description
In questioning the scientific enterprise and its effect on the society around it, this analysis of modern science has a particular emphasis on the role of thematic elements - often unconscious presuppositions that guide scientific work.
Benchmarks for Science Literacy
Author: American Association for the Advancement of Science
Publisher: Oxford University Press
ISBN: 0199726515
Category : Education
Languages : en
Pages : 443
Book Description
Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.
Publisher: Oxford University Press
ISBN: 0199726515
Category : Education
Languages : en
Pages : 443
Book Description
Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.
Athena Unbound
Author: Henry Etzkowitz
Publisher: Cambridge University Press
ISBN: 9780521787383
Category : Business & Economics
Languages : en
Pages : 296
Book Description
Why are there so few women scientists? Persisting differences between women's and men's experiences in science make this question as relevant today as it ever was. This book sets out to answer this question, and to propose solutions for the future. Based on extensive research, it emphasizes that science is an intensely social activity. Despite the scientific ethos of universalism and inclusion, scientists and their institutions are not immune to the prejudices of society as a whole. By presenting women's experiences at all key career stages - from childhood to retirement - the authors reveal the hidden barriers, subtle exclusions and unwritten rules of the scientific workplace, and the effects, both professional and personal, that these have on the female scientist. This important book should be read by all scientists - both male and female - and sociologists, as well as women thinking of embarking on a scientific career.
Publisher: Cambridge University Press
ISBN: 9780521787383
Category : Business & Economics
Languages : en
Pages : 296
Book Description
Why are there so few women scientists? Persisting differences between women's and men's experiences in science make this question as relevant today as it ever was. This book sets out to answer this question, and to propose solutions for the future. Based on extensive research, it emphasizes that science is an intensely social activity. Despite the scientific ethos of universalism and inclusion, scientists and their institutions are not immune to the prejudices of society as a whole. By presenting women's experiences at all key career stages - from childhood to retirement - the authors reveal the hidden barriers, subtle exclusions and unwritten rules of the scientific workplace, and the effects, both professional and personal, that these have on the female scientist. This important book should be read by all scientists - both male and female - and sociologists, as well as women thinking of embarking on a scientific career.
Design Science Research
Author: Aline Dresch
Publisher: Springer
ISBN: 3319073745
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Consolidating existing knowledge in Design Science, this book proposes a new research method to aid the exploration of design and problem solving within business, science and technology. It seeks to overcome a dichotomy that exists in the field between theory and practice to enable researches to find solutions to problems, rather than focusing on the explanation and exploration of the problems themselves. Currently, researches concentrate on to describing, exploring, explaining and predicting phenomena, and little attention is devoted to prescribing solutions. Herbert Simon proposes the need to develop a Science of the Artificial (Design Science), arguing that our reality is much more artificial than natural. However, the research conducted on the Design Science premises has so far been scattered and erratic in different fields of research, such as management, systems information and engineering. This book aims to address this issue by bringing these fields together and emphasising the need for solutions. This book provides a valuable resource to students and researchers of research methods, information systems, management and management science, and production and operations management.
Publisher: Springer
ISBN: 3319073745
Category : Business & Economics
Languages : en
Pages : 176
Book Description
Consolidating existing knowledge in Design Science, this book proposes a new research method to aid the exploration of design and problem solving within business, science and technology. It seeks to overcome a dichotomy that exists in the field between theory and practice to enable researches to find solutions to problems, rather than focusing on the explanation and exploration of the problems themselves. Currently, researches concentrate on to describing, exploring, explaining and predicting phenomena, and little attention is devoted to prescribing solutions. Herbert Simon proposes the need to develop a Science of the Artificial (Design Science), arguing that our reality is much more artificial than natural. However, the research conducted on the Design Science premises has so far been scattered and erratic in different fields of research, such as management, systems information and engineering. This book aims to address this issue by bringing these fields together and emphasising the need for solutions. This book provides a valuable resource to students and researchers of research methods, information systems, management and management science, and production and operations management.
Science for All Americans
Author: F. James Rutherford
Publisher: Oxford University Press
ISBN: 0195361865
Category : Education
Languages : en
Pages : 299
Book Description
In order to compete in the modern world, any society today must rank education in science, mathematics, and technology as one of its highest priorities. It's a sad but true fact, however, that most Americans are not scientifically literate. International studies of educational performance reveal that U.S. students consistently rank near the bottom in science and mathematics. The latest study of the National Assessment of Educational Progress has found that despite some small gains recently, the average performance of seventeen-year-olds in 1986 remained substantially lower than it had been in 1969. As the world approaches the twenty-first century, American schools-- when it comes to the advancement of scientific knowledge-- seem to be stuck in the Victorian age. In Science for All Americans, F. James Rutherford and Andrew Ahlgren brilliantly tackle this devastating problem. Based on Project 2061, a scientific literacy initiative sponsored by the American Association for the Advancement of Science, this wide-ranging, important volume explores what constitutes scientific literacy in a modern society; the knowledge, skills, and attitudes all students should acquire from their total school experience from kindergarten through high school; and what steps this country must take to begin reforming its system of education in science, mathematics, and technology. Science for All Americans describes the scientifically literate person as one who knows that science, mathematics, and technology are interdependent enterprises with strengths and limitations; who understands key concepts and principles of science; who recognizes both the diversity and unity of the natural world; and who uses scientific knowledge and scientific ways of thinking for personal and social purposes. Its recommendations for educational reform downplay traditional subject categories and instead highlight the connections between them. It also emphasizes ideas and thinking skills over the memorization of specialized vocabulary. For instance, basic scientific literacy means knowing that the chief function of living cells is assembling protein molecules according to the instructions coded in DNA molecules, but does not mean necessarily knowing the terms "ribosome" or "deoxyribonucleic acid." Science, mathematics, and technology will be at the center of the radical changes in the nature of human existence that will occur during the next life span; therefore, preparing today's children for tomorrow's world must entail a solid education in these areas. Science for All Americans will help pave the way for the necessary reforms in America's schools.
Publisher: Oxford University Press
ISBN: 0195361865
Category : Education
Languages : en
Pages : 299
Book Description
In order to compete in the modern world, any society today must rank education in science, mathematics, and technology as one of its highest priorities. It's a sad but true fact, however, that most Americans are not scientifically literate. International studies of educational performance reveal that U.S. students consistently rank near the bottom in science and mathematics. The latest study of the National Assessment of Educational Progress has found that despite some small gains recently, the average performance of seventeen-year-olds in 1986 remained substantially lower than it had been in 1969. As the world approaches the twenty-first century, American schools-- when it comes to the advancement of scientific knowledge-- seem to be stuck in the Victorian age. In Science for All Americans, F. James Rutherford and Andrew Ahlgren brilliantly tackle this devastating problem. Based on Project 2061, a scientific literacy initiative sponsored by the American Association for the Advancement of Science, this wide-ranging, important volume explores what constitutes scientific literacy in a modern society; the knowledge, skills, and attitudes all students should acquire from their total school experience from kindergarten through high school; and what steps this country must take to begin reforming its system of education in science, mathematics, and technology. Science for All Americans describes the scientifically literate person as one who knows that science, mathematics, and technology are interdependent enterprises with strengths and limitations; who understands key concepts and principles of science; who recognizes both the diversity and unity of the natural world; and who uses scientific knowledge and scientific ways of thinking for personal and social purposes. Its recommendations for educational reform downplay traditional subject categories and instead highlight the connections between them. It also emphasizes ideas and thinking skills over the memorization of specialized vocabulary. For instance, basic scientific literacy means knowing that the chief function of living cells is assembling protein molecules according to the instructions coded in DNA molecules, but does not mean necessarily knowing the terms "ribosome" or "deoxyribonucleic acid." Science, mathematics, and technology will be at the center of the radical changes in the nature of human existence that will occur during the next life span; therefore, preparing today's children for tomorrow's world must entail a solid education in these areas. Science for All Americans will help pave the way for the necessary reforms in America's schools.
National Military Establishments and the Advancement of Science and Technology
Author: P. Forman
Publisher: Springer Science & Business Media
ISBN: 9781402002502
Category : History
Languages : en
Pages : 376
Book Description
To some philosophers, seeking to understand the human condition, technology is a necessary guide. But to think through the complex human phenomenon of technology we must tackle philosophy of science, philosophy of culture, moral issues, comparative civilizational studies, and the economics of specific industrial and military technologies in their historical contexts. The philoso pher wants to grasp the technological factor in this troubled world, even as we see it is only one factor, and that it does not speak openly for itself. Put directly, our human troubles to a considerable extent have been transformed, exaggerated, distorted, even degraded, perhaps transcended, by what engi neers and scientists, entrepreneurs and politicians, have wrought. But our problems are ancient, problems of dominations, struggles, survival, values in conflict, greed and insane sadisms. To get some conceptual light on the social reality which seems immediately to be so complicated, a philosopher will need to learn from the historians of technology. A few years ago, the philosopher Elisabeth Straker concluded that "a his torical philosophy of technology [is required] since history - and history alone - provides all those concepts that form part of the repertoire of the philosoph ical analysis of technology". And she added that this goes far beyond the triviality that like other cultural achievements technology has its historical development. Now historical comprehension is no substitute for a logical methodology in the analysis of technological problems.
Publisher: Springer Science & Business Media
ISBN: 9781402002502
Category : History
Languages : en
Pages : 376
Book Description
To some philosophers, seeking to understand the human condition, technology is a necessary guide. But to think through the complex human phenomenon of technology we must tackle philosophy of science, philosophy of culture, moral issues, comparative civilizational studies, and the economics of specific industrial and military technologies in their historical contexts. The philoso pher wants to grasp the technological factor in this troubled world, even as we see it is only one factor, and that it does not speak openly for itself. Put directly, our human troubles to a considerable extent have been transformed, exaggerated, distorted, even degraded, perhaps transcended, by what engi neers and scientists, entrepreneurs and politicians, have wrought. But our problems are ancient, problems of dominations, struggles, survival, values in conflict, greed and insane sadisms. To get some conceptual light on the social reality which seems immediately to be so complicated, a philosopher will need to learn from the historians of technology. A few years ago, the philosopher Elisabeth Straker concluded that "a his torical philosophy of technology [is required] since history - and history alone - provides all those concepts that form part of the repertoire of the philosoph ical analysis of technology". And she added that this goes far beyond the triviality that like other cultural achievements technology has its historical development. Now historical comprehension is no substitute for a logical methodology in the analysis of technological problems.
The Language of Science Education
Author: William F. McComas
Publisher: Springer Science & Business Media
ISBN: 9462094977
Category : Education
Languages : en
Pages : 122
Book Description
The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning is written expressly for science education professionals and students of science education to provide the foundation for a shared vocabulary of the field of science teaching and learning. Science education is a part of education studies but has developed a unique vocabulary that is occasionally at odds with the ways some terms are commonly used both in the field of education and in general conversation. Therefore, understanding the specific way that terms are used within science education is vital for those who wish to understand the existing literature or make contributions to it. The Language of Science Education provides definitions for 100 unique terms, but when considering the related terms that are also defined as they relate to the targeted words, almost 150 words are represented in the book. For instance, “laboratory instruction” is accompanied by definitions for openness, wet lab, dry lab, virtual lab and cookbook lab. Each key term is defined both with a short entry designed to provide immediate access following by a more extensive discussion, with extensive references and examples where appropriate. Experienced readers will recognize the majority of terms included, but the developing discipline of science education demands the consideration of new words. For example, the term blended science is offered as a better descriptor for interdisciplinary science and make a distinction between project-based and problem-based instruction. Even a definition for science education is included. The Language of Science Education is designed as a reference book but many readers may find it useful and enlightening to read it as if it were a series of very short stories.
Publisher: Springer Science & Business Media
ISBN: 9462094977
Category : Education
Languages : en
Pages : 122
Book Description
The Language of Science Education: An Expanded Glossary of Key Terms and Concepts in Science Teaching and Learning is written expressly for science education professionals and students of science education to provide the foundation for a shared vocabulary of the field of science teaching and learning. Science education is a part of education studies but has developed a unique vocabulary that is occasionally at odds with the ways some terms are commonly used both in the field of education and in general conversation. Therefore, understanding the specific way that terms are used within science education is vital for those who wish to understand the existing literature or make contributions to it. The Language of Science Education provides definitions for 100 unique terms, but when considering the related terms that are also defined as they relate to the targeted words, almost 150 words are represented in the book. For instance, “laboratory instruction” is accompanied by definitions for openness, wet lab, dry lab, virtual lab and cookbook lab. Each key term is defined both with a short entry designed to provide immediate access following by a more extensive discussion, with extensive references and examples where appropriate. Experienced readers will recognize the majority of terms included, but the developing discipline of science education demands the consideration of new words. For example, the term blended science is offered as a better descriptor for interdisciplinary science and make a distinction between project-based and problem-based instruction. Even a definition for science education is included. The Language of Science Education is designed as a reference book but many readers may find it useful and enlightening to read it as if it were a series of very short stories.
Dirty Science
Author: Bob Gebelein
Publisher: Bookbaby
ISBN: 9780961461140
Category : Science
Languages : en
Pages : 0
Book Description
Establishment scientists are trying to tell us that there is no reality beyond the physical. This has not been proved scientifically, so they use unscientific methods such as ridicule and power politics to force it on the academic community, blocking our knowledge of whole dimensions of reality, the mental and the spiritual.Dirty Science exposes this corruption in our accredited academic institutions and calls upon you, the intelligent reading public, to put pressure on them to clean up the mess.
Publisher: Bookbaby
ISBN: 9780961461140
Category : Science
Languages : en
Pages : 0
Book Description
Establishment scientists are trying to tell us that there is no reality beyond the physical. This has not been proved scientifically, so they use unscientific methods such as ridicule and power politics to force it on the academic community, blocking our knowledge of whole dimensions of reality, the mental and the spiritual.Dirty Science exposes this corruption in our accredited academic institutions and calls upon you, the intelligent reading public, to put pressure on them to clean up the mess.
Learning to Improve
Author: Anthony S. Bryk
Publisher: Harvard Education Press
ISBN: 161250793X
Category : Education
Languages : en
Pages : 309
Book Description
As a field, education has largely failed to learn from experience. Time after time, promising education reforms fall short of their goals and are abandoned as other promising ideas take their place. In Learning to Improve, the authors argue for a new approach. Rather than “implementing fast and learning slow,” they believe educators should adopt a more rigorous approach to improvement that allows the field to “learn fast to implement well.” Using ideas borrowed from improvement science, the authors show how a process of disciplined inquiry can be combined with the use of networks to identify, adapt, and successfully scale up promising interventions in education. Organized around six core principles, the book shows how “networked improvement communities” can bring together researchers and practitioners to accelerate learning in key areas of education. Examples include efforts to address the high rates of failure among students in community college remedial math courses and strategies for improving feedback to novice teachers. Learning to Improve offers a new paradigm for research and development in education that promises to be a powerful driver of improvement for the nation’s schools and colleges.
Publisher: Harvard Education Press
ISBN: 161250793X
Category : Education
Languages : en
Pages : 309
Book Description
As a field, education has largely failed to learn from experience. Time after time, promising education reforms fall short of their goals and are abandoned as other promising ideas take their place. In Learning to Improve, the authors argue for a new approach. Rather than “implementing fast and learning slow,” they believe educators should adopt a more rigorous approach to improvement that allows the field to “learn fast to implement well.” Using ideas borrowed from improvement science, the authors show how a process of disciplined inquiry can be combined with the use of networks to identify, adapt, and successfully scale up promising interventions in education. Organized around six core principles, the book shows how “networked improvement communities” can bring together researchers and practitioners to accelerate learning in key areas of education. Examples include efforts to address the high rates of failure among students in community college remedial math courses and strategies for improving feedback to novice teachers. Learning to Improve offers a new paradigm for research and development in education that promises to be a powerful driver of improvement for the nation’s schools and colleges.
The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309470641
Category : Education
Languages : en
Pages : 283
Book Description
In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.
Publisher: National Academies Press
ISBN: 0309470641
Category : Education
Languages : en
Pages : 283
Book Description
In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.