Author: Vikram Iyengar
Publisher: Springer Science & Business Media
ISBN: 1461511135
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
Test Resource Partitioning for System-on-a-Chip is about test resource partitioning and optimization techniques for plug-and-play system-on-a-chip (SOC) test automation. Plug-and-play refers to the paradigm in which core-to-core interfaces as well as core-to-SOC logic interfaces are standardized, such that cores can be easily plugged into "virtual sockets" on the SOC design, and core tests can be plugged into the SOC during test without substantial effort on the part of the system integrator. The goal of the book is to position test resource partitioning in the context of SOC test automation, as well as to generate interest and motivate research on this important topic. SOC integrated circuits composed of embedded cores are now commonplace. Nevertheless, There remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design, and test challenges are a major contributor to the widening gap between design capability and manufacturing capacity. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. Test Resource Partitioning for System-on-a-Chip responds to a pressing need for a structured methodology for SOC test automation. It presents new techniques for the partitioning and optimization of the three major SOC test resources: test hardware, testing time and test data volume. Test Resource Partitioning for System-on-a-Chip paves the way for a powerful integrated framework to automate the test flow for a large number of cores in an SOC in a plug-and-play fashion. The framework presented allows the system integrator to reduce test cost and meet short time-to-market requirements.
Test Resource Partitioning for System-on-a-Chip
Author: Vikram Iyengar
Publisher: Springer Science & Business Media
ISBN: 1461511135
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
Test Resource Partitioning for System-on-a-Chip is about test resource partitioning and optimization techniques for plug-and-play system-on-a-chip (SOC) test automation. Plug-and-play refers to the paradigm in which core-to-core interfaces as well as core-to-SOC logic interfaces are standardized, such that cores can be easily plugged into "virtual sockets" on the SOC design, and core tests can be plugged into the SOC during test without substantial effort on the part of the system integrator. The goal of the book is to position test resource partitioning in the context of SOC test automation, as well as to generate interest and motivate research on this important topic. SOC integrated circuits composed of embedded cores are now commonplace. Nevertheless, There remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design, and test challenges are a major contributor to the widening gap between design capability and manufacturing capacity. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. Test Resource Partitioning for System-on-a-Chip responds to a pressing need for a structured methodology for SOC test automation. It presents new techniques for the partitioning and optimization of the three major SOC test resources: test hardware, testing time and test data volume. Test Resource Partitioning for System-on-a-Chip paves the way for a powerful integrated framework to automate the test flow for a large number of cores in an SOC in a plug-and-play fashion. The framework presented allows the system integrator to reduce test cost and meet short time-to-market requirements.
Publisher: Springer Science & Business Media
ISBN: 1461511135
Category : Technology & Engineering
Languages : en
Pages : 234
Book Description
Test Resource Partitioning for System-on-a-Chip is about test resource partitioning and optimization techniques for plug-and-play system-on-a-chip (SOC) test automation. Plug-and-play refers to the paradigm in which core-to-core interfaces as well as core-to-SOC logic interfaces are standardized, such that cores can be easily plugged into "virtual sockets" on the SOC design, and core tests can be plugged into the SOC during test without substantial effort on the part of the system integrator. The goal of the book is to position test resource partitioning in the context of SOC test automation, as well as to generate interest and motivate research on this important topic. SOC integrated circuits composed of embedded cores are now commonplace. Nevertheless, There remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design, and test challenges are a major contributor to the widening gap between design capability and manufacturing capacity. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. Test Resource Partitioning for System-on-a-Chip responds to a pressing need for a structured methodology for SOC test automation. It presents new techniques for the partitioning and optimization of the three major SOC test resources: test hardware, testing time and test data volume. Test Resource Partitioning for System-on-a-Chip paves the way for a powerful integrated framework to automate the test flow for a large number of cores in an SOC in a plug-and-play fashion. The framework presented allows the system integrator to reduce test cost and meet short time-to-market requirements.
SOC (System-on-a-Chip) Testing for Plug and Play Test Automation
Author: Krishnendu Chakrabarty
Publisher: Springer Science & Business Media
ISBN: 1475765274
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
System-on-a-Chip (SOC) integrated circuits composed of embedded cores are now commonplace. Nevertheless, there remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design and manufacturing capabilities. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. In addition, long interconnects, high density, and high-speed designs lead to new types of faults involving crosstalk and signal integrity. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is an edited work containing thirteen contributions that address various aspects of SOC testing. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is a valuable reference for researchers and students interested in various aspects of SOC testing.
Publisher: Springer Science & Business Media
ISBN: 1475765274
Category : Technology & Engineering
Languages : en
Pages : 202
Book Description
System-on-a-Chip (SOC) integrated circuits composed of embedded cores are now commonplace. Nevertheless, there remain several roadblocks to rapid and efficient system integration. Test development is seen as a major bottleneck in SOC design and manufacturing capabilities. Testing SOCs is especially challenging in the absence of standardized test structures, test automation tools, and test protocols. In addition, long interconnects, high density, and high-speed designs lead to new types of faults involving crosstalk and signal integrity. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is an edited work containing thirteen contributions that address various aspects of SOC testing. SOC (System-on-a-Chip) Testing for Plug and Play Test Automation is a valuable reference for researchers and students interested in various aspects of SOC testing.
System-on-Chip
Author: Bashir M. Al-Hashimi
Publisher: IET
ISBN: 0863415520
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book highlights both the key achievements of electronic systems design targeting SoC implementation style, and the future challenges presented by the continuing scaling of CMOS technology.
Publisher: IET
ISBN: 0863415520
Category : Technology & Engineering
Languages : en
Pages : 940
Book Description
This book highlights both the key achievements of electronic systems design targeting SoC implementation style, and the future challenges presented by the continuing scaling of CMOS technology.
Introduction to Advanced System-on-Chip Test Design and Optimization
Author: Erik Larsson
Publisher: Springer Science & Business Media
ISBN: 0387256245
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
SOC test design and its optimization is the topic of Introduction to Advanced System-on-Chip Test Design and Optimization. It gives an introduction to testing, describes the problems related to SOC testing, discusses the modeling granularity and the implementation into EDA (electronic design automation) tools. The book is divided into three sections: i) test concepts, ii) SOC design for test, and iii) SOC test applications. The first part covers an introduction into test problems including faults, fault types, design-flow, design-for-test techniques such as scan-testing and Boundary Scan. The second part of the book discusses SOC related problems such as system modeling, test conflicts, power consumption, test access mechanism design, test scheduling and defect-oriented scheduling. Finally, the third part focuses on SOC applications, such as integrated test scheduling and TAM design, defect-oriented scheduling, and integrating test design with the core selection process.
Publisher: Springer Science & Business Media
ISBN: 0387256245
Category : Technology & Engineering
Languages : en
Pages : 397
Book Description
SOC test design and its optimization is the topic of Introduction to Advanced System-on-Chip Test Design and Optimization. It gives an introduction to testing, describes the problems related to SOC testing, discusses the modeling granularity and the implementation into EDA (electronic design automation) tools. The book is divided into three sections: i) test concepts, ii) SOC design for test, and iii) SOC test applications. The first part covers an introduction into test problems including faults, fault types, design-flow, design-for-test techniques such as scan-testing and Boundary Scan. The second part of the book discusses SOC related problems such as system modeling, test conflicts, power consumption, test access mechanism design, test scheduling and defect-oriented scheduling. Finally, the third part focuses on SOC applications, such as integrated test scheduling and TAM design, defect-oriented scheduling, and integrating test design with the core selection process.
VLSI-SoC: Advanced Topics on Systems on a Chip
Author: Ricardo Reis
Publisher: Springer
ISBN: 0387895582
Category : Computers
Languages : en
Pages : 315
Book Description
This book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 15th conference was held at the Georgia Institute of Technology, Atlanta, USA (October 15-17, 2007). Previous conferences have taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5 and by the IEEE Council on Electronic Design Automation (CEDA), is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well in the test of these systems. VLSI-SoC conferences aim to address these exciting new issues.
Publisher: Springer
ISBN: 0387895582
Category : Computers
Languages : en
Pages : 315
Book Description
This book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 15th conference was held at the Georgia Institute of Technology, Atlanta, USA (October 15-17, 2007). Previous conferences have taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5 and by the IEEE Council on Electronic Design Automation (CEDA), is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well in the test of these systems. VLSI-SoC conferences aim to address these exciting new issues.
Design and Test Technology for Dependable Systems-on-chip
Author: Raimund Ubar
Publisher: IGI Global
ISBN: 1609602145
Category : Computers
Languages : en
Pages : 580
Book Description
"This book covers aspects of system design and efficient modelling, and also introduces various fault models and fault mechanisms associated with digital circuits integrated into System on Chip (SoC), Multi-Processor System-on Chip (MPSoC) or Network on Chip (NoC)"--
Publisher: IGI Global
ISBN: 1609602145
Category : Computers
Languages : en
Pages : 580
Book Description
"This book covers aspects of system design and efficient modelling, and also introduces various fault models and fault mechanisms associated with digital circuits integrated into System on Chip (SoC), Multi-Processor System-on Chip (MPSoC) or Network on Chip (NoC)"--
Advances in VLSI and Embedded Systems
Author: Zuber Patel
Publisher: Springer Nature
ISBN: 9811562296
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book presents select peer-reviewed proceedings of the International Conference on Advances in VLSI and Embedded Systems (AVES 2019) held at SVNIT, Surat, Gujarat, India. The book covers cutting-edge original research in VLSI design, devices and emerging technologies, embedded systems, and CAD for VLSI. With an aim to address the demand for complex and high-functionality systems as well as portable consumer electronics, the contents focus on basic concepts of circuit and systems design, fabrication, testing, and standardization. This book can be useful for students, researchers as well as industry professionals interested in emerging trends in VLSI and embedded systems.
Publisher: Springer Nature
ISBN: 9811562296
Category : Technology & Engineering
Languages : en
Pages : 306
Book Description
This book presents select peer-reviewed proceedings of the International Conference on Advances in VLSI and Embedded Systems (AVES 2019) held at SVNIT, Surat, Gujarat, India. The book covers cutting-edge original research in VLSI design, devices and emerging technologies, embedded systems, and CAD for VLSI. With an aim to address the demand for complex and high-functionality systems as well as portable consumer electronics, the contents focus on basic concepts of circuit and systems design, fabrication, testing, and standardization. This book can be useful for students, researchers as well as industry professionals interested in emerging trends in VLSI and embedded systems.
Thermal Issues in Testing of Advanced Systems on Chip
Author: Nima Aghaee Ghaleshahi
Publisher: Linköping University Electronic Press
ISBN: 9176859495
Category :
Languages : en
Pages : 219
Book Description
Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.
Publisher: Linköping University Electronic Press
ISBN: 9176859495
Category :
Languages : en
Pages : 219
Book Description
Many cutting-edge computer and electronic products are powered by advanced Systems-on-Chip (SoC). Advanced SoCs encompass superb performance together with large number of functions. This is achieved by efficient integration of huge number of transistors. Such very large scale integration is enabled by a core-based design paradigm as well as deep-submicron and 3D-stacked-IC technologies. These technologies are susceptible to reliability and testing complications caused by thermal issues. Three crucial thermal issues related to temperature variations, temperature gradients, and temperature cycling are addressed in this thesis. Existing test scheduling techniques rely on temperature simulations to generate schedules that meet thermal constraints such as overheating prevention. The difference between the simulated temperatures and the actual temperatures is called temperature error. This error, for past technologies, is negligible. However, advanced SoCs experience large errors due to large process variations. Such large errors have costly consequences, such as overheating, and must be taken care of. This thesis presents an adaptive approach to generate test schedules that handle such temperature errors. Advanced SoCs manufactured as 3D stacked ICs experience large temperature gradients. Temperature gradients accelerate certain early-life defect mechanisms. These mechanisms can be artificially accelerated using gradient-based, burn-in like, operations so that the defects are detected before shipping. Moreover, temperature gradients exacerbate some delay-related defects. In order to detect such defects, testing must be performed when appropriate temperature-gradients are enforced. A schedule-based technique that enforces the temperature-gradients for burn-in like operations is proposed in this thesis. This technique is further developed to support testing for delay-related defects while appropriate gradients are enforced. The last thermal issue addressed by this thesis is related to temperature cycling. Temperature cycling test procedures are usually applied to safety-critical applications to detect cycling-related early-life failures. Such failures affect advanced SoCs, particularly through-silicon-via structures in 3D-stacked-ICs. An efficient schedule-based cycling-test technique that combines cycling acceleration with testing is proposed in this thesis. The proposed technique fits into existing 3D testing procedures and does not require temperature chambers. Therefore, the overall cycling acceleration and testing cost can be drastically reduced. All the proposed techniques have been implemented and evaluated with extensive experiments based on ITC’02 benchmarks as well as a number of 3D stacked ICs. Experiments show that the proposed techniques work effectively and reduce the costs, in particular the costs related to addressing thermal issues and early-life failures. We have also developed a fast temperature simulation technique based on a closed-form solution for the temperature equations. Experiments demonstrate that the proposed simulation technique reduces the schedule generation time by more than half.
Power-Aware Testing and Test Strategies for Low Power Devices
Author: Patrick Girard
Publisher: Springer Science & Business Media
ISBN: 1441909281
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Managing the power consumption of circuits and systems is now considered one of the most important challenges for the semiconductor industry. Elaborate power management strategies, such as dynamic voltage scaling, clock gating or power gating techniques, are used today to control the power dissipation during functional operation. The usage of these strategies has various implications on manufacturing test, and power-aware test is therefore increasingly becoming a major consideration during design-for-test and test preparation for low power devices. This book explores existing solutions for power-aware test and design-for-test of conventional circuits and systems, and surveys test strategies and EDA solutions for testing low power devices.
Publisher: Springer Science & Business Media
ISBN: 1441909281
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
Managing the power consumption of circuits and systems is now considered one of the most important challenges for the semiconductor industry. Elaborate power management strategies, such as dynamic voltage scaling, clock gating or power gating techniques, are used today to control the power dissipation during functional operation. The usage of these strategies has various implications on manufacturing test, and power-aware test is therefore increasingly becoming a major consideration during design-for-test and test preparation for low power devices. This book explores existing solutions for power-aware test and design-for-test of conventional circuits and systems, and surveys test strategies and EDA solutions for testing low power devices.
Urban Intelligence and Applications
Author: Xiaohui Yuan
Publisher: Springer Nature
ISBN: 3030450996
Category : Computers
Languages : en
Pages : 248
Book Description
This volume presents selected papers from the International Conference on Urban Intelligence and Applications (ICUIA), which took place on May 10-12, 2019 in Wuhan, China. The goal of the conference was to bring together researchers, industry leaders, policy makers, and administrators to discuss emerging technologies and their applications to advance the design and implementation of intelligent utilization and management of urban assets, and thus contributing to the autonomous, reliable, and efficient operation of modern, smart cities. The papers are collated to address major themes of urban sustainability, urban infrastructure and management, smart city applications, image and signal processing, natural language processing, and machine learning for monitoring and communications applications. The book will be of interest to researchers and industrial practitioners working on geospatial theories and tools, smart city applications, urban mobility and transportation, and community well-being and management.
Publisher: Springer Nature
ISBN: 3030450996
Category : Computers
Languages : en
Pages : 248
Book Description
This volume presents selected papers from the International Conference on Urban Intelligence and Applications (ICUIA), which took place on May 10-12, 2019 in Wuhan, China. The goal of the conference was to bring together researchers, industry leaders, policy makers, and administrators to discuss emerging technologies and their applications to advance the design and implementation of intelligent utilization and management of urban assets, and thus contributing to the autonomous, reliable, and efficient operation of modern, smart cities. The papers are collated to address major themes of urban sustainability, urban infrastructure and management, smart city applications, image and signal processing, natural language processing, and machine learning for monitoring and communications applications. The book will be of interest to researchers and industrial practitioners working on geospatial theories and tools, smart city applications, urban mobility and transportation, and community well-being and management.