Author: Alesky Tralle
Publisher: Springer
ISBN: 3540691456
Category : Mathematics
Languages : en
Pages : 216
Book Description
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.
Symplectic Manifolds with no Kaehler structure
Author: Alesky Tralle
Publisher: Springer
ISBN: 3540691456
Category : Mathematics
Languages : en
Pages : 216
Book Description
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.
Publisher: Springer
ISBN: 3540691456
Category : Mathematics
Languages : en
Pages : 216
Book Description
This is a research monograph covering the majority of known results on the problem of constructing compact symplectic manifolds with no Kaehler structure with an emphasis on the use of rational homotopy theory. In recent years, some new and stimulating conjectures and problems have been formulated due to an influx of homotopical ideas. Examples include the Lupton-Oprea conjecture, the Benson-Gordon conjecture, both of which are in the spirit of some older and still unsolved problems (e.g. Thurston's conjecture and Sullivan's problem). Our explicit aim is to clarify the interrelations between certain aspects of symplectic geometry and homotopy theory in the framework of the problems mentioned above. We expect that the reader is aware of the basics of differential geometry and algebraic topology at graduate level.
Infinite Dimensional Kähler Manifolds
Author: Alan Huckleberry
Publisher: Birkhäuser
ISBN: 3034882270
Category : Mathematics
Languages : en
Pages : 385
Book Description
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
Publisher: Birkhäuser
ISBN: 3034882270
Category : Mathematics
Languages : en
Pages : 385
Book Description
Infinite dimensional manifolds, Lie groups and algebras arise naturally in many areas of mathematics and physics. Having been used mainly as a tool for the study of finite dimensional objects, the emphasis has changed and they are now frequently studied for their own independent interest. On the one hand this is a collection of closely related articles on infinite dimensional Kähler manifolds and associated group actions which grew out of a DMV-Seminar on the same subject. On the other hand it covers significantly more ground than was possible during the seminar in Oberwolfach and is in a certain sense intended as a systematic approach which ranges from the foundations of the subject to recent developments. It should be accessible to doctoral students and as well researchers coming from a wide range of areas. The initial chapters are devoted to a rather selfcontained introduction to group actions on complex and symplectic manifolds and to Borel-Weil theory in finite dimensions. These are followed by a treatment of the basics of infinite dimensional Lie groups, their actions and their representations. Finally, a number of more specialized and advanced topics are discussed, e.g., Borel-Weil theory for loop groups, aspects of the Virasoro algebra, (gauge) group actions and determinant bundles, and second quantization and the geometry of the infinite dimensional Grassmann manifold.
An Introduction to Extremal Kahler Metrics
Author: Gábor Székelyhidi
Publisher: American Mathematical Soc.
ISBN: 1470410478
Category : Mathematics
Languages : en
Pages : 210
Book Description
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Publisher: American Mathematical Soc.
ISBN: 1470410478
Category : Mathematics
Languages : en
Pages : 210
Book Description
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
Lectures on Symplectic Geometry
Author: Ana Cannas da Silva
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Publisher: Springer
ISBN: 354045330X
Category : Mathematics
Languages : en
Pages : 240
Book Description
The goal of these notes is to provide a fast introduction to symplectic geometry for graduate students with some knowledge of differential geometry, de Rham theory and classical Lie groups. This text addresses symplectomorphisms, local forms, contact manifolds, compatible almost complex structures, Kaehler manifolds, hamiltonian mechanics, moment maps, symplectic reduction and symplectic toric manifolds. It contains guided problems, called homework, designed to complement the exposition or extend the reader's understanding. There are by now excellent references on symplectic geometry, a subset of which is in the bibliography of this book. However, the most efficient introduction to a subject is often a short elementary treatment, and these notes attempt to serve that purpose. This text provides a taste of areas of current research and will prepare the reader to explore recent papers and extensive books on symplectic geometry where the pace is much faster. For this reprint numerous corrections and clarifications have been made, and the layout has been improved.
Lectures on Kähler Manifolds
Author: Werner Ballmann
Publisher: European Mathematical Society
ISBN: 9783037190258
Category : Mathematics
Languages : en
Pages : 190
Book Description
These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.
Publisher: European Mathematical Society
ISBN: 9783037190258
Category : Mathematics
Languages : en
Pages : 190
Book Description
These notes are based on lectures the author gave at the University of Bonn and the Erwin Schrodinger Institute in Vienna. The aim is to give a thorough introduction to the theory of Kahler manifolds with special emphasis on the differential geometric side of Kahler geometry. The exposition starts with a short discussion of complex manifolds and holomorphic vector bundles and a detailed account of the basic differential geometric properties of Kahler manifolds. The more advanced topics are the cohomology of Kahler manifolds, Calabi conjecture, Gromov's Kahler hyperbolic spaces, and the Kodaira embedding theorem. Some familiarity with global analysis and partial differential equations is assumed, in particular in the part on the Calabi conjecture. There are appendices on Chern-Weil theory, symmetric spaces, and $L^2$-cohomology.
Lectures on Kähler Geometry
Author: Andrei Moroianu
Publisher: Cambridge University Press
ISBN: 1139463004
Category : Mathematics
Languages : en
Pages : 4
Book Description
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Publisher: Cambridge University Press
ISBN: 1139463004
Category : Mathematics
Languages : en
Pages : 4
Book Description
Kähler geometry is a beautiful and intriguing area of mathematics, of substantial research interest to both mathematicians and physicists. This self-contained graduate text provides a concise and accessible introduction to the topic. The book begins with a review of basic differential geometry, before moving on to a description of complex manifolds and holomorphic vector bundles. Kähler manifolds are discussed from the point of view of Riemannian geometry, and Hodge and Dolbeault theories are outlined, together with a simple proof of the famous Kähler identities. The final part of the text studies several aspects of compact Kähler manifolds: the Calabi conjecture, Weitzenböck techniques, Calabi–Yau manifolds, and divisors. All sections of the book end with a series of exercises and students and researchers working in the fields of algebraic and differential geometry and theoretical physics will find that the book provides them with a sound understanding of this theory.
Riemannian Geometry of Contact and Symplectic Manifolds
Author: David E. Blair
Publisher: Springer Science & Business Media
ISBN: 1475736045
Category : Mathematics
Languages : en
Pages : 263
Book Description
Book endorsed by the Sunyer Prize Committee (A. Weinstein, J. Oesterle et. al.).
Publisher: Springer Science & Business Media
ISBN: 1475736045
Category : Mathematics
Languages : en
Pages : 263
Book Description
Book endorsed by the Sunyer Prize Committee (A. Weinstein, J. Oesterle et. al.).
Symplectic Kähler Manifolds
Author: Alexander John Smith
Publisher:
ISBN:
Category :
Languages : en
Pages : 186
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 186
Book Description
An Introduction to Symplectic Geometry
Author: Rolf Berndt
Publisher: American Mathematical Soc.
ISBN: 9780821820568
Category : Mathematics
Languages : en
Pages : 226
Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821820568
Category : Mathematics
Languages : en
Pages : 226
Book Description
Symplectic geometry is a central topic of current research in mathematics. Indeed, symplectic methods are key ingredients in the study of dynamical systems, differential equations, algebraic geometry, topology, mathematical physics and representations of Lie groups. This book is a true introduction to symplectic geometry, assuming only a general background in analysis and familiarity with linear algebra. It starts with the basics of the geometry of symplectic vector spaces. Then, symplectic manifolds are defined and explored. In addition to the essential classic results, such as Darboux's theorem, more recent results and ideas are also included here, such as symplectic capacity and pseudoholomorphic curves. These ideas have revolutionized the subject. The main examples of symplectic manifolds are given, including the cotangent bundle, Kähler manifolds, and coadjoint orbits. Further principal ideas are carefully examined, such as Hamiltonian vector fields, the Poisson bracket, and connections with contact manifolds. Berndt describes some of the close connections between symplectic geometry and mathematical physics in the last two chapters of the book. In particular, the moment map is defined and explored, both mathematically and in its relation to physics. He also introduces symplectic reduction, which is an important tool for reducing the number of variables in a physical system and for constructing new symplectic manifolds from old. The final chapter is on quantization, which uses symplectic methods to take classical mechanics to quantum mechanics. This section includes a discussion of the Heisenberg group and the Weil (or metaplectic) representation of the symplectic group. Several appendices provide background material on vector bundles, on cohomology, and on Lie groups and Lie algebras and their representations. Berndt's presentation of symplectic geometry is a clear and concise introduction to the major methods and applications of the subject, and requires only a minimum of prerequisites. This book would be an excellent text for a graduate course or as a source for anyone who wishes to learn about symplectic geometry.
Special Metrics and Group Actions in Geometry
Author: Simon G. Chiossi
Publisher: Springer
ISBN: 3319675192
Category : Mathematics
Languages : en
Pages : 341
Book Description
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.
Publisher: Springer
ISBN: 3319675192
Category : Mathematics
Languages : en
Pages : 341
Book Description
The volume is a follow-up to the INdAM meeting “Special metrics and quaternionic geometry” held in Rome in November 2015. It offers a panoramic view of a selection of cutting-edge topics in differential geometry, including 4-manifolds, quaternionic and octonionic geometry, twistor spaces, harmonic maps, spinors, complex and conformal geometry, homogeneous spaces and nilmanifolds, special geometries in dimensions 5–8, gauge theory, symplectic and toric manifolds, exceptional holonomy and integrable systems. The workshop was held in honor of Simon Salamon, a leading international scholar at the forefront of academic research who has made significant contributions to all these subjects. The articles published here represent a compelling testimony to Salamon’s profound and longstanding impact on the mathematical community. Target readership includes graduate students and researchers working in Riemannian and complex geometry, Lie theory and mathematical physics.