Author: Hermann Weyl
Publisher: Princeton University Press
ISBN: 1400874343
Category : Mathematics
Languages : en
Pages : 178
Book Description
Symmetry is a classic study of symmetry in mathematics, the sciences, nature, and art from one of the twentieth century's greatest mathematicians. Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations—as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Symmetry
Author: Hermann Weyl
Publisher: Princeton University Press
ISBN: 1400874343
Category : Mathematics
Languages : en
Pages : 178
Book Description
Symmetry is a classic study of symmetry in mathematics, the sciences, nature, and art from one of the twentieth century's greatest mathematicians. Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations—as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Publisher: Princeton University Press
ISBN: 1400874343
Category : Mathematics
Languages : en
Pages : 178
Book Description
Symmetry is a classic study of symmetry in mathematics, the sciences, nature, and art from one of the twentieth century's greatest mathematicians. Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations—as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Symmetry
Author: David Wade
Publisher: Bloomsbury Publishing USA
ISBN: 0802715389
Category : Mathematics
Languages : en
Pages : 68
Book Description
As much of interest to mathematicians as it is to artists, as relevant to physics as to architecture, symmetry underlies almost every aspect of nature and our experience of the world. Illustrated with old engravings and original work by the author, this book moves from church windows and mirror reflections to the deepest ideas of hidden symmetries in physics and geometry, music and the arts, left- and right-handedness.
Publisher: Bloomsbury Publishing USA
ISBN: 0802715389
Category : Mathematics
Languages : en
Pages : 68
Book Description
As much of interest to mathematicians as it is to artists, as relevant to physics as to architecture, symmetry underlies almost every aspect of nature and our experience of the world. Illustrated with old engravings and original work by the author, this book moves from church windows and mirror reflections to the deepest ideas of hidden symmetries in physics and geometry, music and the arts, left- and right-handedness.
Symmetry
Author: R. McWeeny
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Publisher: Elsevier
ISBN: 1483226247
Category : Mathematics
Languages : en
Pages : 263
Book Description
Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.
Geometry and Symmetry
Author: Paul B. Yale
Publisher: Courier Corporation
ISBN: 0486169324
Category : Mathematics
Languages : en
Pages : 306
Book Description
DIVIntroduction to the geometry of euclidean, affine and projective spaces with special emphasis on the important groups of symmetries of these spaces. Many exercises, extensive bibliography. Advanced undergraduate level. /div
Publisher: Courier Corporation
ISBN: 0486169324
Category : Mathematics
Languages : en
Pages : 306
Book Description
DIVIntroduction to the geometry of euclidean, affine and projective spaces with special emphasis on the important groups of symmetries of these spaces. Many exercises, extensive bibliography. Advanced undergraduate level. /div
Symmetry
Author: Kristopher Tapp
Publisher: Springer Nature
ISBN: 3030516695
Category : Mathematics
Languages : en
Pages : 263
Book Description
This textbook is perfect for a math course for non-math majors, with the goal of encouraging effective analytical thinking and exposing students to elegant mathematical ideas. It includes many topics commonly found in sampler courses, like Platonic solids, Euler’s formula, irrational numbers, countable sets, permutations, and a proof of the Pythagorean Theorem. All of these topics serve a single compelling goal: understanding the mathematical patterns underlying the symmetry that we observe in the physical world around us. The exposition is engaging, precise and rigorous. The theorems are visually motivated with intuitive proofs appropriate for the intended audience. Students from all majors will enjoy the many beautiful topics herein, and will come to better appreciate the powerful cumulative nature of mathematics as these topics are woven together into a single fascinating story about the ways in which objects can be symmetric.
Publisher: Springer Nature
ISBN: 3030516695
Category : Mathematics
Languages : en
Pages : 263
Book Description
This textbook is perfect for a math course for non-math majors, with the goal of encouraging effective analytical thinking and exposing students to elegant mathematical ideas. It includes many topics commonly found in sampler courses, like Platonic solids, Euler’s formula, irrational numbers, countable sets, permutations, and a proof of the Pythagorean Theorem. All of these topics serve a single compelling goal: understanding the mathematical patterns underlying the symmetry that we observe in the physical world around us. The exposition is engaging, precise and rigorous. The theorems are visually motivated with intuitive proofs appropriate for the intended audience. Students from all majors will enjoy the many beautiful topics herein, and will come to better appreciate the powerful cumulative nature of mathematics as these topics are woven together into a single fascinating story about the ways in which objects can be symmetric.
Beautiful Symmetry
Author: Alex Berke
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Publisher: MIT Press
ISBN: 026253892X
Category : Mathematics
Languages : en
Pages : 165
Book Description
A coloring book that invites readers to explore symmetry and the beauty of math visually. Beautiful Symmetry is a coloring book about math, inviting us to engage with mathematical concepts visually through coloring challenges and visual puzzles. We can explore symmetry and the beauty of mathematics playfully, coloring through ideas usually reserved for advanced courses. The book is for children and adults, for math nerds and math avoiders, for educators, students, and coloring enthusiasts. Through illustration, language that is visual, and words that are jargon-free, the book introduces group theory as the mathematical foundation for discussions of symmetry, covering symmetry groups that include the cyclic groups, frieze groups, and wallpaper groups. The illustrations are drawn by algorithms, following the symmetry rules for each given group. The coloring challenges can be completed and fully realized only on the page; solutions are provided. Online, in a complementary digital edition, the illustrations come to life with animated interactions that show the symmetries that generated them. Traditional math curricula focus on arithmetic and the manipulation of numbers, and may make some learners feel that math is not for them. By offering a more visual and tactile approach, this book shows how math can be for everyone. Combining the playful and the pedagogical, Beautiful Symmetry offers both relaxing entertainment for recreational colorers and a resource for math-curious readers, students, and educators.
Mirror Symmetry
Author: Kentaro Hori
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 0821829556
Category : Mathematics
Languages : en
Pages : 954
Book Description
This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.
Seeing Symmetry
Author: Loreen Leedy
Publisher: National Geographic Books
ISBN: 0823427625
Category : Juvenile Nonfiction
Languages : en
Pages : 0
Book Description
This book is aligned with the Common Core State Standards for fourth-grade mathematics in geometry: (4.G.3).Once you start looking, you can find symmetry all around you. Symmetry is when one shape looks the same if you flip, slide, or turn it. It's in words and even letters. It's in both nature and man-made things. In fact, art, design, decoration, and architecture are full of it. This clear and concise book explains different types of symmetry and shows you how to make your own symmetrical masterpieces. Notes and glossary are included.
Publisher: National Geographic Books
ISBN: 0823427625
Category : Juvenile Nonfiction
Languages : en
Pages : 0
Book Description
This book is aligned with the Common Core State Standards for fourth-grade mathematics in geometry: (4.G.3).Once you start looking, you can find symmetry all around you. Symmetry is when one shape looks the same if you flip, slide, or turn it. It's in words and even letters. It's in both nature and man-made things. In fact, art, design, decoration, and architecture are full of it. This clear and concise book explains different types of symmetry and shows you how to make your own symmetrical masterpieces. Notes and glossary are included.
Shapes, Space, and Symmetry
Author: Alan Holden
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Publisher: Courier Corporation
ISBN: 9780486268514
Category : Mathematics
Languages : en
Pages : 218
Book Description
Explains structure of nine regular solids and many semiregular solids and demonstrates how they can be used to explain mathematics. Instructions for cardboard models. Over 300 illustrations. 1971 edition.
Physics from Symmetry
Author: Jakob Schwichtenberg
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.
Publisher: Springer
ISBN: 3319666312
Category : Science
Languages : en
Pages : 294
Book Description
This is a textbook that derives the fundamental theories of physics from symmetry. It starts by introducing, in a completely self-contained way, all mathematical tools needed to use symmetry ideas in physics. Thereafter, these tools are put into action and by using symmetry constraints, the fundamental equations of Quantum Mechanics, Quantum Field Theory, Electromagnetism, and Classical Mechanics are derived. As a result, the reader is able to understand the basic assumptions behind, and the connections between the modern theories of physics. The book concludes with first applications of the previously derived equations. Thanks to the input of readers from around the world, this second edition has been purged of typographical errors and also contains several revised sections with improved explanations.