Support Vector Machines Applications

Support Vector Machines Applications PDF Author: Yunqian Ma
Publisher: Springer Science & Business Media
ISBN: 3319023004
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.

Support Vector Machines Applications

Support Vector Machines Applications PDF Author: Yunqian Ma
Publisher: Springer Science & Business Media
ISBN: 3319023004
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
Support vector machines (SVM) have both a solid mathematical background and practical applications. This book focuses on the recent advances and applications of the SVM, such as image processing, medical practice, computer vision, and pattern recognition, machine learning, applied statistics, and artificial intelligence. The aim of this book is to create a comprehensive source on support vector machine applications.

Support Vector Machines: Theory and Applications

Support Vector Machines: Theory and Applications PDF Author: Lipo Wang
Publisher: Springer Science & Business Media
ISBN: 9783540243885
Category : Computers
Languages : en
Pages : 456

Get Book Here

Book Description
The support vector machine (SVM) has become one of the standard tools for machine learning and data mining. This carefully edited volume presents the state of the art of the mathematical foundation of SVM in statistical learning theory, as well as novel algorithms and applications. Support Vector Machines provides a selection of numerous real-world applications, such as bioinformatics, text categorization, pattern recognition, and object detection, written by leading experts in their respective fields.

Support Vector Machines

Support Vector Machines PDF Author: Ingo Steinwart
Publisher: Springer Science & Business Media
ISBN: 0387772421
Category : Computers
Languages : en
Pages : 611

Get Book Here

Book Description
Every mathematical discipline goes through three periods of development: the naive, the formal, and the critical. David Hilbert The goal of this book is to explain the principles that made support vector machines (SVMs) a successful modeling and prediction tool for a variety of applications. We try to achieve this by presenting the basic ideas of SVMs together with the latest developments and current research questions in a uni?ed style. In a nutshell, we identify at least three reasons for the success of SVMs: their ability to learn well with only a very small number of free parameters, their robustness against several types of model violations and outliers, and last but not least their computational e?ciency compared with several other methods. Although there are several roots and precursors of SVMs, these methods gained particular momentum during the last 15 years since Vapnik (1995, 1998) published his well-known textbooks on statistical learning theory with aspecialemphasisonsupportvectormachines. Sincethen,the?eldofmachine learninghaswitnessedintenseactivityinthestudyofSVMs,whichhasspread moreandmoretootherdisciplinessuchasstatisticsandmathematics. Thusit seems fair to say that several communities are currently working on support vector machines and on related kernel-based methods. Although there are many interactions between these communities, we think that there is still roomforadditionalfruitfulinteractionandwouldbegladifthistextbookwere found helpful in stimulating further research. Many of the results presented in this book have previously been scattered in the journal literature or are still under review. As a consequence, these results have been accessible only to a relativelysmallnumberofspecialists,sometimesprobablyonlytopeoplefrom one community but not the others.

Support Vector Machines and Perceptrons

Support Vector Machines and Perceptrons PDF Author: M.N. Murty
Publisher: Springer
ISBN: 3319410636
Category : Computers
Languages : en
Pages : 103

Get Book Here

Book Description
This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>

Machine Learning and Its Applications

Machine Learning and Its Applications PDF Author: Georgios Paliouras
Publisher: Springer
ISBN: 3540446737
Category : Computers
Languages : en
Pages : 334

Get Book Here

Book Description
In recent years machine learning has made its way from artificial intelligence into areas of administration, commerce, and industry. Data mining is perhaps the most widely known demonstration of this migration, complemented by less publicized applications of machine learning like adaptive systems in industry, financial prediction, medical diagnosis and the construction of user profiles for Web browsers. This book presents the capabilities of machine learning methods and ideas on how these methods could be used to solve real-world problems. The first ten chapters assess the current state of the art of machine learning, from symbolic concept learning and conceptual clustering to case-based reasoning, neural networks, and genetic algorithms. The second part introduces the reader to innovative applications of ML techniques in fields such as data mining, knowledge discovery, human language technology, user modeling, data analysis, discovery science, agent technology, finance, etc.

Knowledge Discovery with Support Vector Machines

Knowledge Discovery with Support Vector Machines PDF Author: Lutz H. Hamel
Publisher: John Wiley & Sons
ISBN: 1118211030
Category : Computers
Languages : en
Pages : 211

Get Book Here

Book Description
An easy-to-follow introduction to support vector machines This book provides an in-depth, easy-to-follow introduction to support vector machines drawing only from minimal, carefully motivated technical and mathematical background material. It begins with a cohesive discussion of machine learning and goes on to cover: Knowledge discovery environments Describing data mathematically Linear decision surfaces and functions Perceptron learning Maximum margin classifiers Support vector machines Elements of statistical learning theory Multi-class classification Regression with support vector machines Novelty detection Complemented with hands-on exercises, algorithm descriptions, and data sets, Knowledge Discovery with Support Vector Machines is an invaluable textbook for advanced undergraduate and graduate courses. It is also an excellent tutorial on support vector machines for professionals who are pursuing research in machine learning and related areas.

Support Vector Machines and Their Application in Chemistry and Biotechnology

Support Vector Machines and Their Application in Chemistry and Biotechnology PDF Author: Yizeng Liang
Publisher: CRC Press
ISBN: 1439821283
Category : Computers
Languages : en
Pages : 206

Get Book Here

Book Description
Support vector machines (SVMs) are used in a range of applications, including drug design, food quality control, metabolic fingerprint analysis, and microarray data-based cancer classification. While most mathematicians are well-versed in the distinctive features and empirical performance of SVMs, many chemists and biologists are not as familiar wi

Pattern Recognition with Support Vector Machines

Pattern Recognition with Support Vector Machines PDF Author: Seong-Whan Lee
Publisher: Springer
ISBN: 3540456651
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
This book constitutes the refereed proceedings of the First International Workshop on Pattern Recognition with Support Vector Machines, SVM 2002, held in Niagara Falls, Canada in August 2002.The 16 revised full papers and 14 poster papers presented together with two invited contributions were carefully reviewed and selected from 57 full paper submissions. The papers presented span the whole range of topics in pattern recognition with support vector machines from computational theories to implementations and applications.

Support-vector Machines

Support-vector Machines PDF Author: Pooja Saigal
Publisher: Nova Science Publishers
ISBN: 9781536187571
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
"Support Vector Machines: Evolution and Applications reviews the basics of Support Vector Machines (SVM), their evolution and applications in diverse fields. SVM is an efficient supervised learning approach popularly used for pattern recognition, medical image classification, face recognition and various other applications. In the last 25 years, a lot of research has been carried out to extend the use of SVM to a variety of domains. This book is an attempt to present the description of a conventional SVM, along with discussion of its different versions and recent application areas. The first chapter of this book introduces SVM and presents the optimization problems for a conventional SVM. Another chapter discusses the journey of SVM over a period of more than two decades. SVM is proposed as a separating hyperplane classifier that partitions the data belonging to two classes. Later on, various versions of SVM are proposed that obtain two hyperplanes instead of one. A few of these variants of SVM are discussed in this book. The major part of this book discusses some interesting applications of SVM in areas like quantitative diagnosis of rotor vibration process faults through power spectrum entropy-based SVM, hardware architectures of SVM applied in pattern recognition systems, speaker recognition using SVM, classification of iron ore in mines and simultaneous prediction of the density and viscosity for the ternary system water- ethanol-ethylene glycol ionic liquids. The latter part of the book is dedicated to various approaches for the extension of SVM and similar classifiers to a multi-category framework, so that they can be used for the classification of data with more than two classes"--

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods PDF Author: Nello Cristianini
Publisher: Cambridge University Press
ISBN: 9780521780193
Category : Computers
Languages : en
Pages : 216

Get Book Here

Book Description
This is a comprehensive introduction to Support Vector Machines, a generation learning system based on advances in statistical learning theory.