Author: E. Hellner
Publisher:
ISBN:
Category : Crystal lattices
Languages : en
Pages : 100
Book Description
Structure Type Descriptions for Intermetallic Phases in the Space Groups I4/mmm and I42/mcm and Their Subgroups
Author: E. Hellner
Publisher:
ISBN:
Category : Crystal lattices
Languages : en
Pages : 100
Book Description
Publisher:
ISBN:
Category : Crystal lattices
Languages : en
Pages : 100
Book Description
Structure Type Descriptions for Intermetallic Phases in the Space Groups 14/mmm and 142/mcm and Their Subgroups
Author: E. Hellner
Publisher:
ISBN:
Category : Crystal lattices
Languages : en
Pages : 102
Book Description
Publisher:
ISBN:
Category : Crystal lattices
Languages : en
Pages : 102
Book Description
Crystallography of Quasicrystals
Author: Steurer Walter
Publisher: Springer Science & Business Media
ISBN: 3642018998
Category : Science
Languages : en
Pages : 388
Book Description
From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, but it also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 3642018998
Category : Science
Languages : en
Pages : 388
Book Description
From tilings to quasicrystal structures and from surfaces to the n-dimensional approach, this book gives a full, self-contained in-depth description of the crystallography of quasicrystals. It aims not only at conveying the concepts and a precise picture of the structures of quasicrystals, but it also enables the interested reader to enter the field of quasicrystal structure analysis. Going beyond metallic quasicrystals, it also describes the new, dynamically growing field of photonic quasicrystals. The readership will be graduate students and researchers in crystallography, solid-state physics, materials science, solid- state chemistry and applied mathematics.
Transmission Electron Microscopy
Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543
Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.
Minerals as Advanced Materials II
Author: S V Krivovichev
Publisher: Springer Science & Business Media
ISBN: 3642200184
Category : Science
Languages : en
Pages : 424
Book Description
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
Publisher: Springer Science & Business Media
ISBN: 3642200184
Category : Science
Languages : en
Pages : 424
Book Description
This book is a collection of papers that are devoted to various aspects of interactions between mineralogy and material sciences. It will include reviews, perspective papers and original research papers on mineral nanostructures, biomineralization, micro- and nanoporous mineral phases as functional materials, physical and optical properties of minerals, etc. Many important materials that dominate modern technological development were known to mineralogists for hundreds of years, though their properties were not fully recognized. Mineralogy, on the other hand, needs new impacts for the further development in the line of modern scientific achievements such as bio- and nanotechnologies as well as by the understanding of a deep role that information plays in the formation of natural structures and definition of natural processes. It is the idea of this series of books to provide an arena for interdisciplinary discussion on minerals as advanced materials.
Symmetry Relationships Between Crystal Structures
Author: Ulrich Müller
Publisher: Academic
ISBN: 0199669953
Category : Science
Languages : en
Pages : 349
Book Description
The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
Publisher: Academic
ISBN: 0199669953
Category : Science
Languages : en
Pages : 349
Book Description
The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
X-Ray Diffraction Crystallography
Author: Yoshio Waseda
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.
Publisher: Springer Science & Business Media
ISBN: 3642166350
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements.
Revolution of Perovskite
Author: Narayanasamy Sabari Arul
Publisher: Springer Nature
ISBN: 9811512671
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
This volume presents advanced synthesis techniques for fabricating Perovskite materials with enhanced properties for applications such as energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing, and biomedical instruments. The book attempts to fill a gap in the published literature and provide a detailed reference on Perovskite materials. This book will be of use to graduate students and academic and industrial researchers in the fields of solid-state chemistry, physics, materials science, and chemical engineering.
Publisher: Springer Nature
ISBN: 9811512671
Category : Technology & Engineering
Languages : en
Pages : 324
Book Description
This volume presents advanced synthesis techniques for fabricating Perovskite materials with enhanced properties for applications such as energy storage devices, photovoltaics, electrocatalysis, electronic devices, photocatalysts, sensing, and biomedical instruments. The book attempts to fill a gap in the published literature and provide a detailed reference on Perovskite materials. This book will be of use to graduate students and academic and industrial researchers in the fields of solid-state chemistry, physics, materials science, and chemical engineering.
Handbook of Magnetism and Magnetic Materials
Author: Michael Coey
Publisher: Springer
ISBN: 9783030632083
Category : Science
Languages : en
Pages : 1679
Book Description
This handbook presents a comprehensive survey of magnetism and magnetic materials. The dramatic advances in information technology and electromagnetic engineering make it necessary to systematically review the approved key knowledge and summarize the state of the art in this vast field within one seminal reference work. The book thus delivers up-to-date and well-structured information on a wealth of topics encompassing all fundamental aspects of the underlying physics and materials science, as well as advanced experimental methodology and applications. It features coverage of the host of fascinating and complex phenomena that arise from the use of magnetic fields in e.g. chemistry and biology. Edited by two internationally renowned scholars and featuring authored chapters from leading experts in the field, Springer’s Handbook of Magnetism and Magnetic Materials is an invaluable source of essential reference information for a broad audience of students, researchers, and magnetism professionals.
Publisher: Springer
ISBN: 9783030632083
Category : Science
Languages : en
Pages : 1679
Book Description
This handbook presents a comprehensive survey of magnetism and magnetic materials. The dramatic advances in information technology and electromagnetic engineering make it necessary to systematically review the approved key knowledge and summarize the state of the art in this vast field within one seminal reference work. The book thus delivers up-to-date and well-structured information on a wealth of topics encompassing all fundamental aspects of the underlying physics and materials science, as well as advanced experimental methodology and applications. It features coverage of the host of fascinating and complex phenomena that arise from the use of magnetic fields in e.g. chemistry and biology. Edited by two internationally renowned scholars and featuring authored chapters from leading experts in the field, Springer’s Handbook of Magnetism and Magnetic Materials is an invaluable source of essential reference information for a broad audience of students, researchers, and magnetism professionals.
Statics and Dynamics of Alloy Phase Transformations
Author: Patrice E.A. Turchi
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.
Publisher: Springer Science & Business Media
ISBN: 1461524768
Category : Science
Languages : en
Pages : 725
Book Description
The study of phase transformations in substitutional alloys, including order disorder phenomena and structural transformations, plays a crucial role in understanding the physical and mechanical properties of materials, and in designing alloys with desired technologically important characteristics. Indeed, most of the physical properties, including equilibrium properties, transport, magnetic, vibrational as well as mechanical properties of alloys are often controlled by and are highly sensitive to the existence of ordered compounds and to the occurrence of structural transformations. Correspondingly, the alloy designer facing the task of processing new high-performance materials with properties that meet specific industrial applications must answer the following question: What is the crystalline structure and the atomic configuration that an alloy may exhibit at given temperature and concentration? Usually the answer is sought in the phase-diagram of a relevant system that is often determined experimentally and does not provide insight to the underlying mechanisms driving phase stability. Because of the rather tedious and highly risky nature of developing new materials through conventional metallurgical techniques, a great deal of effort has been expended in devising methods for understanding the mechanisms contrOlling phase transformations at the microscopic level. These efforts have been bolstered through the development of fully ab initio, accurate theoretical models, coupled with the advent of new experimental methods and of powerful supercomputer capabilities.