Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions

Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions PDF Author: N.V. Krylov
Publisher: Springer
ISBN: 3540481613
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.

Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions

Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions PDF Author: N.V. Krylov
Publisher: Springer
ISBN: 3540481613
Category : Mathematics
Languages : en
Pages : 248

Get Book Here

Book Description
Kolmogorov equations are second order parabolic equations with a finite or an infinite number of variables. They are deeply connected with stochastic differential equations in finite or infinite dimensional spaces. They arise in many fields as Mathematical Physics, Chemistry and Mathematical Finance. These equations can be studied both by probabilistic and by analytic methods, using such tools as Gaussian measures, Dirichlet Forms, and stochastic calculus. The following courses have been delivered: N.V. Krylov presented Kolmogorov equations coming from finite-dimensional equations, giving existence, uniqueness and regularity results. M. Röckner has presented an approach to Kolmogorov equations in infinite dimensions, based on an LP-analysis of the corresponding diffusion operators with respect to suitably chosen measures. J. Zabczyk started from classical results of L. Gross, on the heat equation in infinite dimension, and discussed some recent results.

Stochastic Optimal Control in Infinite Dimension

Stochastic Optimal Control in Infinite Dimension PDF Author: Giorgio Fabbri
Publisher: Springer
ISBN: 3319530674
Category : Mathematics
Languages : en
Pages : 928

Get Book Here

Book Description
Providing an introduction to stochastic optimal control in infinite dimension, this book gives a complete account of the theory of second-order HJB equations in infinite-dimensional Hilbert spaces, focusing on its applicability to associated stochastic optimal control problems. It features a general introduction to optimal stochastic control, including basic results (e.g. the dynamic programming principle) with proofs, and provides examples of applications. A complete and up-to-date exposition of the existing theory of viscosity solutions and regular solutions of second-order HJB equations in Hilbert spaces is given, together with an extensive survey of other methods, with a full bibliography. In particular, Chapter 6, written by M. Fuhrman and G. Tessitore, surveys the theory of regular solutions of HJB equations arising in infinite-dimensional stochastic control, via BSDEs. The book is of interest to both pure and applied researchers working in the control theory of stochastic PDEs, and in PDEs in infinite dimension. Readers from other fields who want to learn the basic theory will also find it useful. The prerequisites are: standard functional analysis, the theory of semigroups of operators and its use in the study of PDEs, some knowledge of the dynamic programming approach to stochastic optimal control problems in finite dimension, and the basics of stochastic analysis and stochastic equations in infinite-dimensional spaces.

Stochastic Equations in Infinite Dimensions

Stochastic Equations in Infinite Dimensions PDF Author: Da Prato Guiseppe
Publisher:
ISBN: 9781306148061
Category :
Languages : en
Pages :

Get Book Here

Book Description
The aim of this book is to give a systematic and self-contained presentation of basic results on stochastic evolution equations in infinite dimensional, typically Hilbert and Banach, spaces. These are a generalization of stochastic differential equations as introduced by Ito and Gikham that occur, for instance, when describing random phenomena that crop up in science and engineering, as well as in the study of differential equations. The book is divided into three parts. In the first the authors give a self-contained exposition of the basic properties of probability measure on separable Banach and Hilbert spaces, as required later; they assume a reasonable background in probability theory and finite dimensional stochastic processes. The second part is devoted to the existence and uniqueness of solutions of a general stochastic evolution equation, and the third concerns the qualitative properties of those solutions. Appendices gather together background results from analysis that are otherwise hard to find under one roof. The book ends with a comprehensive bibliography that will contribute to the book's value for all working in stochastic differential equations."

Stochastic Cauchy Problems in Infinite Dimensions

Stochastic Cauchy Problems in Infinite Dimensions PDF Author: Irina V. Melnikova
Publisher: CRC Press
ISBN: 1315360268
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
Stochastic Cauchy Problems in Infinite Dimensions: Generalized and Regularized Solutions presents stochastic differential equations for random processes with values in Hilbert spaces. Accessible to non-specialists, the book explores how modern semi-group and distribution methods relate to the methods of infinite-dimensional stochastic analysis. It also shows how the idea of regularization in a broad sense pervades all these methods and is useful for numerical realization and applications of the theory. The book presents generalized solutions to the Cauchy problem in its initial form with white noise processes in spaces of distributions. It also covers the "classical" approach to stochastic problems involving the solution of corresponding integral equations. The first part of the text gives a self-contained introduction to modern semi-group and abstract distribution methods for solving the homogeneous (deterministic) Cauchy problem. In the second part, the author solves stochastic problems using semi-group and distribution methods as well as the methods of infinite-dimensional stochastic analysis.

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations PDF Author: Claudia Prévôt
Publisher: Springer Science & Business Media
ISBN: 3540707808
Category : Mathematics
Languages : en
Pages : 149

Get Book Here

Book Description
These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. There are three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material is included in appendices.

Stochastic Partial Differential Equations

Stochastic Partial Differential Equations PDF Author: Pao-Liu Chow
Publisher: CRC Press
ISBN: 1466579579
Category : Mathematics
Languages : en
Pages : 333

Get Book Here

Book Description
Explore Theory and Techniques to Solve Physical, Biological, and Financial Problems Since the first edition was published, there has been a surge of interest in stochastic partial differential equations (PDEs) driven by the Levy type of noise. Stochastic Partial Differential Equations, Second Edition incorporates these recent developments and impro

Evolution Equations, Semigroups and Functional Analysis

Evolution Equations, Semigroups and Functional Analysis PDF Author: Brunello Terreni
Publisher: Springer Science & Business Media
ISBN: 9783764367916
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi

Stochastic Partial Differential Equations and Applications - VII

Stochastic Partial Differential Equations and Applications - VII PDF Author: Giuseppe Da Prato
Publisher: CRC Press
ISBN: 1420028723
Category : Mathematics
Languages : en
Pages : 360

Get Book Here

Book Description
Stochastic Partial Differential Equations and Applications gives an overview of current state-of-the-art stochastic PDEs in several fields, such as filtering theory, stochastic quantization, quantum probability, and mathematical finance. Featuring contributions from leading expert participants at an international conference on the subject, this boo

Amplitude Equations for Stochastic Partial Differential Equations

Amplitude Equations for Stochastic Partial Differential Equations PDF Author: Dirk Bl”mker
Publisher: World Scientific
ISBN: 9812706372
Category : Mathematics
Languages : en
Pages : 137

Get Book Here

Book Description
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap. The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of time-scales present near a change of stability. For students, the book provides a lucid introduction to the subject highlighting the new tools necessary for stochastic equations, while serving as an excellent guide to recent research.

Stochastic Partial Differential Equations and Related Fields

Stochastic Partial Differential Equations and Related Fields PDF Author: Andreas Eberle
Publisher: Springer
ISBN: 3319749293
Category : Mathematics
Languages : en
Pages : 565

Get Book Here

Book Description
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.