Stochastic Biomathematical Models

Stochastic Biomathematical Models PDF Author: Mostafa Bachar
Publisher: Springer
ISBN: 3642321577
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

Stochastic Biomathematical Models

Stochastic Biomathematical Models PDF Author: Mostafa Bachar
Publisher: Springer
ISBN: 3642321577
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

The Coevolution

The Coevolution PDF Author: Edward Ashford Lee
Publisher: MIT Press
ISBN: 0262043939
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
Should digital technology be viewed as a new life form, sharing our ecosystem and coevolving with us? Are humans defining technology, or is technology defining humans? In this book, Edward Ashford Lee considers the case that we are less in control of the trajectory of technology than we think. It shapes us as much as we shape it, and it may be more defensible to think of technology as the result of a Darwinian coevolution than the result of top-down intelligent design. Richard Dawkins famously said that a chicken is an egg's way of making another egg. Is a human a computer's way of making another computer? To understand this question requires a deep dive into how evolution works, how humans are different from computers, and how the way technology develops resembles the emergence of a new life form on our planet. Lee presents the case for considering digital beings to be living, then offers counterarguments. What we humans do with our minds is more than computation, and what digital systems do—be teleported at the speed of light, backed up, and restored—may never be possible for humans. To believe that we are simply computations, he argues, is a “dataist” faith and scientifically indefensible. Digital beings depend on humans—and humans depend on digital beings. More likely than a planetary wipe-out of humanity is an ongoing, symbiotic coevolution of culture and technology.

Mathematical Modeling for Genes to Collective Cell Dynamics

Mathematical Modeling for Genes to Collective Cell Dynamics PDF Author: Tetsuji Tokihiro
Publisher: Springer Nature
ISBN: 981167132X
Category : Science
Languages : en
Pages : 179

Get Book Here

Book Description
This book describes the dynamics of biological cells and their mathematical modeling. The topics cover the dynamics of RNA polymerases in transcription, construction of vascular networks in angiogenesis, and synchronization of cardiomyocytes. Statistical analysis of single cell dynamics and classification of proteins by mathematical modeling are also presented. The book provides the most up-to-date information on both experimental results and mathematical models that can be used to analyze cellular dynamics. Novel experimental results and approaches to understand them will be appealing to the readers. Each chapter contains 1) an introductory description of the phenomenon, 2) explanations about the mathematical technique to analyze it, 3) new experimental results, 4) mathematical modeling and its application to the phenomenon. Elementary introductions for the biological phenomenon and mathematical approach to them are especially useful for beginners. The importance of collaboration between mathematics and biological sciences has been increasing and providing new outcomes. This book gives good examples of the fruitful collaboration between mathematics and biological sciences.

Research Awards Index

Research Awards Index PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 742

Get Book Here

Book Description


An Introduction to Stochastic Modeling

An Introduction to Stochastic Modeling PDF Author: Howard M. Taylor
Publisher: Academic Press
ISBN: 1483269272
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
An Introduction to Stochastic Modeling provides information pertinent to the standard concepts and methods of stochastic modeling. This book presents the rich diversity of applications of stochastic processes in the sciences. Organized into nine chapters, this book begins with an overview of diverse types of stochastic models, which predicts a set of possible outcomes weighed by their likelihoods or probabilities. This text then provides exercises in the applications of simple stochastic analysis to appropriate problems. Other chapters consider the study of general functions of independent, identically distributed, nonnegative random variables representing the successive intervals between renewals. This book discusses as well the numerous examples of Markov branching processes that arise naturally in various scientific disciplines. The final chapter deals with queueing models, which aid the design process by predicting system performance. This book is a valuable resource for students of engineering and management science. Engineers will also find this book useful.

Signal and Image Analysis for Biomedical and Life Sciences

Signal and Image Analysis for Biomedical and Life Sciences PDF Author: Changming Sun
Publisher: Springer
ISBN: 3319109847
Category : Computers
Languages : en
Pages : 286

Get Book Here

Book Description
With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in the fields of biomedical and life sciences who wish to keep abreast with the latest techniques in signal and image analysis. The book presents a detailed description to each of the applications. It can be used by those both at graduate and specialist levels.

Spatial Dynamics and Pattern Formation in Biological Populations

Spatial Dynamics and Pattern Formation in Biological Populations PDF Author: Ranjit Kumar Upadhyay
Publisher: CRC Press
ISBN: 100033435X
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
The book provides an introduction to deterministic (and some stochastic) modeling of spatiotemporal phenomena in ecology, epidemiology, and neural systems. A survey of the classical models in the fields with up to date applications is given. The book begins with detailed description of how spatial dynamics/diffusive processes influence the dynamics of biological populations. These processes play a key role in understanding the outbreak and spread of pandemics which help us in designing the control strategies from the public health perspective. A brief discussion on the functional mechanism of the brain (single neuron models and network level) with classical models of neuronal dynamics in space and time is given. Relevant phenomena and existing modeling approaches in ecology, epidemiology and neuroscience are introduced, which provide examples of pattern formation in these models. The analysis of patterns enables us to study the dynamics of macroscopic and microscopic behaviour of underlying systems and travelling wave type patterns observed in dispersive systems. Moving on to virus dynamics, authors present a detailed analysis of different types models of infectious diseases including two models for influenza, five models for Ebola virus and seven models for Zika virus with diffusion and time delay. A Chapter is devoted for the study of Brain Dynamics (Neural systems in space and time). Significant advances made in modeling the reaction-diffusion systems are presented and spatiotemporal patterning in the systems is reviewed. Development of appropriate mathematical models and detailed analysis (such as linear stability, weakly nonlinear analysis, bifurcation analysis, control theory, numerical simulation) are presented. Key Features Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Concepts are introduced in such a way that readers with a basic knowledge of differential equations and numerical methods can understand the analysis. The results are also illustrated with figures. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Models are analysed for stability of equilibrium points, Turing instability, Hopf bifurcation and pattern formations. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises. The Book is suitable for advanced undergraduate, graduate and research students. For those who are working in the above areas, it provides information from most of the recent works. The text presents all the fundamental concepts and mathematical skills needed to build models and perform analyses.

Piecewise Deterministic Processes in Biological Models

Piecewise Deterministic Processes in Biological Models PDF Author: Ryszard Rudnicki
Publisher: Springer
ISBN: 3319612956
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
This book presents a concise introduction to piecewise deterministic Markov processes (PDMPs), with particular emphasis on their applications to biological models. Further, it presents examples of biological phenomena, such as gene activity and population growth, where different types of PDMPs appear: continuous time Markov chains, deterministic processes with jumps, processes with switching dynamics, and point processes. Subsequent chapters present the necessary tools from the theory of stochastic processes and semigroups of linear operators, as well as theoretical results concerning the long-time behaviour of stochastic semigroups induced by PDMPs and their applications to biological models. As such, the book offers a valuable resource for mathematicians and biologists alike. The first group will find new biological models that lead to interesting and often new mathematical questions, while the second can observe how to include seemingly disparate biological proc esses into a unified mathematical theory, and to arrive at revealing biological conclusions. The target audience primarily comprises of researchers in these two fields, but the book will also benefit graduate students.

The Evolution of the Use of Mathematics in Cancer Research

The Evolution of the Use of Mathematics in Cancer Research PDF Author: Pedro Jose Gutiérrez Diez
Publisher: Springer Science & Business Media
ISBN: 146142397X
Category : Medical
Languages : en
Pages : 403

Get Book Here

Book Description
The book will provide an exhaustive and clear explanation of how Statistics, Mathematics and Informatics have been used in cancer research, and seeks to help cancer researchers in achieving their objectives. To do so, state-of-the-art Biostatistics, Biomathematics and Bioinformatics methods will be described and discussed in detail through illustrative and capital examples taken from cancer research work already published. The book will provide a guide for cancer researchers in using Statistics, Mathematics and Informatics, clarifying the contribution of these logical sciences to the study of cancer, thoroughly explaining their procedures and methods, and providing criteria to their appropriate use.

Complex Systems in Biomedicine

Complex Systems in Biomedicine PDF Author: A. Quarteroni
Publisher: Springer Science & Business Media
ISBN: 8847003962
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
Mathematicalmodelingofhumanphysiopathologyisatremendouslyambitioustask. It encompasses the modeling of most diverse compartments such as the cardiovas- lar,respiratory,skeletalandnervoussystems,aswellasthemechanicalandbioch- ical interaction between blood ?ow and arterial walls, and electrocardiac processes and electric conduction in biological tissues. Mathematical models can be set up to simulate both vasculogenesis (the aggregation and organization of endothelial cells dispersed in a given environment) and angiogenesis (the formation of new vessels sprouting from an existing vessel) that are relevant to the formation of vascular networks, and in particular to the description of tumor growth. The integration of models aimed at simulating the cooperation and interrelation of different systems is an even more dif?cult task. It calls for the setting up of, for instance, interaction models for the integrated cardio-vascular system and the interplay between the central circulation and peripheral compartments, models for the mid-to-long range cardiovascular adjustments to pathological conditions (e.g., to account for surgical interventions, congenital malformations, or tumor growth), models for integration among circulation, tissue perfusion, biochemical and thermal regulation, models for parameter identi?cation and sensitivity analysis to parameter changes or data uncertainty – and many others.